HOME > 研究業績詳細


加藤 洋一(カトウ ヨウイチ)

研究テーマ 分子生物学的手法を用いた冠動脈疾患・動脈硬化症進展のメカニズム・予防に関する研究、骨髄幹細胞による血管平滑筋細胞の再生
研究業績(論文) (英文抜粋)

1. Katoh Y, Komuro I, Takaku F, Yamaguchi H, Yazaki Y: Messenger RNA levels of guanine nucleotide-binding proteins are reduced in the ventricle of cardiomyopathic hamsters. Circ Res 67: 235-239, 1990.

2. Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabayashi M, Hoe E, Takaku F, Yazaki Y: Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. J Biol Chem. 266: 1265-1268, 1991.

3. Katoh Y, Komuro I, Yamaguchi H, Yazaki Y: Molecular mechanism of hypertrophied failing heart -- abnormalities of the diastolic properties and contractility. Jpn. Circ. J. 56: 694-700, 1992.

4. Katoh Y, Loukianov E, Kopras E, Zilberman A, Periasamy M: Identification of functional promoter elements in the rabbit smooth muscle myosin heavy chain gene. J Biol Chem. 269: 30538-30545, 1994.

5. Komuro I, Yamazaki T, Katoh Y, Tobe K, Kadowaki T, Nagai R, Yazaki Y: Protein kinase cascade activated by mechanical stress in cardiocytes: possible involvement of angiotensin II. Eur Heart J. 16: 8-11, 1995.

6. Katoh Y and Periasamy M: Growth and differentiation of smooth muscle cells during vascular development. Trends Cardiovasc Med 6: 100-106, 1996.

7. Katoh Y, Molkentin JD, Dave V, Olson EN, Periasamy M: MEF2B is a component of a smooth muscle-specific complex that binds an A/T-rich element important for smooth muscle myosin heavy chain gene expression. J Biol Chem. 273:1511-8, 1998.

8. Komuro I, Itoh S, and Katoh Y. Gene therapy for cardiovascular diseases. Asian Med. J. 43: 165-173, 2000.

9. Itoh S, Katoh Y, Konishi H, Takaya N, Kimura T, Periasamy M, Yamaguchi H: Nitric oxide regulates smooth-muscle-specific myosin heavy chain gene expression at the transcriptional level-possible role of SRF and YY1 through CArG element. J Mol Cell Cardiol. 33: 95-107, 2001.

10. Konishi H, Katoh Y, Takaya N, Kashiwakura Y, Itoh S, Ra C, Daida H: Platelets activated by collagen through immunoreceptor tyrosine-based activation motif play pivotal role in initiation and generation of neointimal hyperplasia after vascular injury. Circulation 105: 912 – 916, 2002.

11. Kashiwakura Y, Katoh Y, Tamayose K, Konishi H, Takaya N, Yuhara S, Yamada M, Sugimoto K, Daida H. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow. Circulation. 107: 2078-81, 2003.

12. Takaya N, Katoh Y, Iwabuchi K, Hayashi I, Konishi H, Itoh S, Okumura K, Ra C, Nagaoka I, Daida H. Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor gamma-chain play a pivotal role in the development of myocardial ischemia-reperfusion injury. J Mol Cell Cardiol. 39: 856-64, 2005.

13. Hashimoto R, Katoh Y, Nakazato Y et al. Differentiation of Mouse Bone Marrow Stromal Cells into Functional Smooth Muscle Cells. J Jpn Coll Angiol 2008, 48; 299-306.

14. Ichinose T, Yamase M, Yokomatsu Y, Kawano Y, Konishi H, Tanimoto K, Oigawa T, Katoh Y, Nakazato Y, Suwa S, Sakurai H, Sumiyoshi M. Acute myocardial infarction with myocardial perfusion defect detected by contrast-enhanced computed tomography. Intern Med. 48: 1235-8, 2009.

15. Hashimoto R, Katoh Y, Itoh S, Iesaki T, Daida H, Nakazato Y and Okada T. T-Type Ca2+ Channel Blockers Increase Smooth Muscle Progenitor Cells and Endothelial Progenitor Cells in Bone Marrow Stromal Cells in Culture by Suppression of Cell Death. Ann Vasc Dis 3: 117-126, 2010.

16. Katoh Y, Nakazato Y. Can We Predict Electroanatomical Remodeling of Left Atrium in Patients with Non-Valvular Atrial Fibrillation by Transforming Growth Factor-βand Tissue Inhibitor of Metalloproteinase-1? Circ J. 75(3):536-7, 2011.

17. Hashimoto R, Katoh Y, Nakamura K, Itoh S, Iesaki T, Daida H, Nakazato Y, Okada T. Enhanced accumulation of adipocytes in bone marrow stromal cells in the presence of increased extracellular and intracellular [Ca2+]. Biochem Biophys Res Commun. 423(4):672-8, 2012.

18. Hashimoto R, Katoh Y, Miyamoto Y, Itoh S, Daida H, Nakazato Y, Okada T. Increased extracellular and intracellular Ca²⁺ lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms. Biochem Biophys Res Commun. 457(4):647-52, 2015.

19. Hashimoto R, Nakamura K, Itoh S, Daida H, Nakazato Y, Okada T and Katoh Y. Bone Marrow-Derived Regenerated Smooth Muscle Cells Have Ion Channels and Properties Characteristic of Vascular Smooth Muscle Cells. J Stem Cell Res Ther 5:257-63, 2015.

20. Hashimoto R, Katoh Y, Miyamoto Y, Nakamura K, Itoh S, Daida H, Nakazato Y, Okada T. High extracellular Ca2+ enhances the adipocyte accumulation of bone marrow stromal cells through a decrease in cAMP. Cell Calcium 67: 74-80, 2017.

21. Hashimoto R, Kakigi R, Nakamura K, Itoh S, Daida H, Okada T, Katoh Y. LPS enhances expression of CD204 through the MAPK/ERK pathway in murine bone marrow macrophages.
Atherosclerosis. 266: 167-175, 2017.

22. Hashimoto R, Daida H, Okada T, Katoh Y. A simple method to increase the proportion of bone marrow-derived macrophages positive for M-CSFR using the reducing agent dithiothreitol (DTT). MethodsX. 27;5:1540-1548, 2018.

23. Hashimoto R, Miyamoto Y, Itoh S, Daida H, Okada T, Katoh Y. Phorbol 12-myristate 13-acetate (PMA) suppresses high Ca2+-enhanced adipogenesis in bone marrow stromal cells.
J Physiol Sci. 69(5):741-748, 2019.

研究者 教育活動