平成 26 年度
順天堂大学大学院スポーツ健康科学研究科 修士論文

成長期サッカー選手に対する
ストレッチングの効果

氏名 鈴木 恒
論文指導教員 桜庭 景植

合格年月日 平成 27 年 2 月 23 日
論文審査員 主査 副査 副査
目次

<table>
<thead>
<tr>
<th>章目</th>
<th>節目</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1章</td>
<td>緒言</td>
<td>1</td>
</tr>
<tr>
<td>第2章</td>
<td>関連文献の考証</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>第1節</td>
<td>成長期サッカー選手のスポーツ傷害</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Osgood-Schlatter 病</td>
</tr>
<tr>
<td></td>
<td>第2節</td>
<td>ストレッチング</td>
</tr>
<tr>
<td></td>
<td></td>
<td>傷害予防効果</td>
</tr>
<tr>
<td>第3章</td>
<td>目的</td>
<td>6</td>
</tr>
<tr>
<td>第4章</td>
<td>方法</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>第1節</td>
<td>ストレッチングの即時効果に関する研究 ー運動前ー</td>
</tr>
<tr>
<td></td>
<td></td>
<td>対象者</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定項目および方法</td>
</tr>
<tr>
<td></td>
<td></td>
<td>統計処理</td>
</tr>
<tr>
<td></td>
<td>第2節</td>
<td>ストレッチングの即時効果に関する研究 ー運動後ー</td>
</tr>
<tr>
<td></td>
<td></td>
<td>対象者</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定項目および方法</td>
</tr>
<tr>
<td></td>
<td></td>
<td>統計処理</td>
</tr>
<tr>
<td></td>
<td>第3節</td>
<td>ストレッチングの実施タイミングに関する研究</td>
</tr>
<tr>
<td></td>
<td></td>
<td>対象者</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定項目および方法</td>
</tr>
<tr>
<td></td>
<td></td>
<td>統計処理</td>
</tr>
<tr>
<td>第5章</td>
<td>結果</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>第1節</td>
<td>ストレッチングの即時効果に関する研究 ー運動前ー</td>
</tr>
<tr>
<td></td>
<td></td>
<td>身体特性および介入前測定値ベースライン</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ストレッチング前後の群内比較</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ストレッチング前後の群間比較</td>
</tr>
</tbody>
</table>
第 2 節 ストレッチングの即時効果に関する研究 — 運動後 — 12
(1) 身体特性および介入前測定値ベースライン 12
(2) ストレッチング前後の群内比較 12
(3) ストレッチング前後の群間比較 13
第 3 節 ストレッチングの実施タイミングに関する研究 13
(1) 介入前後のフローチャート 13
(2) 身体特性および介入前測定値ベースライン 14
(3) ストレッチング介入前後の群内比較 14
(4) ストレッチング介入前後の群間比較 14
第 6 章 考察 16
第 1 節 スtreッチングの即時効果に関する研究 16
第 2 節 ストレッチングの実施タイミングに関する研究 17
第 7 章 結論 19
第 8 章 研究限界 20
第 9 章 要約 21
引用文献 23
Abstract 28
謝辞 30
図表一覧 31
第１章 緒言

近年、サッカーは本邦において最もメジャーなスポーツの1つになりつつある。競技登録人数も、1979年度は高校生年代28万4千人、中学生年代4万5千人、小学生以下約6万9千人だったものが、2013年度にはそれぞれ約16万7千人、26万7千人、31万9千人までに増加し、特に低年齢層の競技人口の増加が著しい。

サッカーの競技人口増加に伴い、国際サッカー連盟（FIFA）ではスポーツ医学の分野にも力を注いでおり、2003年にFIFAの医学評価研究センターでは、サッカーに特化した傷害予防プログラムとしてThe11が推奨された。また2008年には、それを改定したFIFA11+が発表され、世界的にも傷害予防の実証研究が進んでいる。本邦において、Jリーグ下部組織の成長期サッカー選手計342名（平均年齢1年目16.2±1.8歳、2年目15.2±1.8歳、3年目14.2±1.7歳）を対象に、1年目をコントロール群としてFIFA11+を2年間介入した調査報告では、外傷と障害の両方で予防効果が示された。しかし、骨年齢や身長成長速度曲線などに当てはめた成長期の定義が表記されていないことや、コントロール群と2・3年目の介入群で平均年齢に差があるなど、より詳細な報告が今後望まれる。さらに、FIFA11+の適応年齢は14歳以上の選手とされているのに対し、成長期サッカー選手に多発し、オーバーウェースの1つであるOsgood-Schlatter病（以下、オスグッド病と略す）は小学校高学年から中学生年代の11〜14歳で発症数のピークを迎え、11+の適応年齢とオスグッド病の好発年齢には若干の差がみられる。そのため、適応年齢外の選手に対する予防策の考案は、この年代の選手の育成に関わる指導者やアスレティックトレーナーにとって必要性が高い。

最近では、中学生年代でもアスレティックトレーナーが就いているチームがいくつかみられるようになったものの、Jリーグ下部組織や選抜チーム、一部の私立中学校などと限られており、学校単位のスポーツ少年団や部活動レベルではほとんどみられない。仮に小中学生年代のチームでウォーミングアップに1回20分3通りもあるFIFA11+を導入しようとした際、インストラクターの元で講習を受け、適切な姿勢や目的・効果などを理解した指導者が必要であり、いかにして競技レベルや年代に関係なく成長期サッカー選手のスポーツ傷害を減らすことができるかということを考えた際、アスレティックトレーナーが不在であっても、指導者もしくは選手自身が簡便・簡潔に実施できる予防プログラムを開発する必要がある。代表的なスポーツ傷害の予防策の1つとして、
ストレッチングが広くスポーツ現場では行われているものの、運動直前に実施されるストレッチングのスポーツ傷害に対する予防効果は十分に証明されているない。またスポーツによる運動負荷に加え、骨成長期で更に筋ステファニスや筋硬度が增加することにより発症するオーバーユースのスポーツ障害に対するストレッチングの予防効果は、一般的な指導書などでは記載されているものの、その科学的な根拠については示されていない。そこで、スポーツ傷害の中でも成長期サッカー選手に多発するオスグッド病に着目し、大腿前面に対するストレッチングの質や実施するタイミングを検証することで、今後のオスグッド病発症予防の新たなプログラム開発の一助になると考えた。
第２章　関連文献の考証

ここでは前半に成長期サッカー選手のスポーツ傷害、特にオスグッド病を中心として、後半ではストレッチングの傷害予防効果について文献の考証を行う。

第１節　成長期サッカー選手のスポーツ傷害

(1) 成長期サッカー選手の傷害調査

本邦においてチームドクターが診察できるJリーグ下部組織で、かつ複数年または複数チームを対象とした文献は３編あった50,53,61。7チーム計484名（12－17歳）を8ヵ月間調査した調査では、傷害発生を部位別でみると足関節および大腿部、膝関節の順に多く、これら3つの部位で全傷害の半数以上を占めていたことが報告されている30。また同チームを数年追跡した調査においても、足部・足関節が最多で半数以上を占めており30,61、傷害の種類では捻挫が25－33%と最多であった30,55。疲労性障害、腱炎・靭帯炎を含めたスポーツ障害は、高校2・3年生では20%程度だったものが中学1・2年生では30%以上を占めた50。

英国の38のクラブチーム計4773人（9－19歳）を3年間調査した研究では、下肢の傷害が75%を占め、大腿部肉離れや足関節靭帯損傷が多かった17。また同チーム14－16歳のカテゴリーを3年サイクルで10年間追跡（延べ528人）した調査においても下肢の傷害で71%を占めており27、本邦における調査と同様の結果であった。オスグッド病やセーバー病などのオーバーウェスによるスポーツ障害は、全体では5%程度だったのが、11－13歳の世代では13.8%までに上った17。

傷害発生率は、FIFA医科学評価研究センターが作成したサッカー医学マニュアルによると、19歳以下のサッカー選手1536名を対象とした調査で、傷害発生率を1000時間当たりで2.05－13.7件で発生していたことが報告されている40,51。本邦では、1年間の平均所属人数が34.0人の高校生年代のカテゴリーを7年間追跡した調査では1000時間当たり1.92件、同チーム平均所属人数が59.6人の中学生年代のカテゴリーでは2.17件で50、FIFAの調査結果と同範囲内であった。対照に、12－17歳の成長期サッカー選手484名の傷害発生状況の調査30では、トレーニング1000時間当たりの傷害発生数は練習で0.18件、試合では0.33件とFIFAの報告より少ない結果であり、報告によって差がみられた。

3
(2) オスグッド病

オスグッド病は小学校の高学年から中学1・2年の成長期サッカー選手に多発し、骨成長期のgrowth spurtとの関係が深く49, 11-14歳で発症数がピークを迎える24, 54, 59。オスグッド病の罹患率について、グラウンドレベルで医師がメディカルチェックを行った調査では、成長期男子サッカー選手240名の23.0%（55名）がオスグッド病と診断され59、病院で受診した15歳以下のスポーツ傷害3830症例の内5.7%（219例）にみられたことが報告されている22。

オスグッド病は、1903年に大腿四頭筋の収縮力を伴う内側骨粗面の部分剥離であるとしてはじめて報告された47, 59。病態は、内側骨粗面近位の骨化中心と内側骨粗面の二次骨化中心が鈍化する前のapophyseal期において、大腿四頭筋の収縮を伴う慢性的な運動負荷により膝蓋靱帯を通じて内側骨粗面部が圧迫された結果、同部位の炎症・部分的剥離・微小軟骨のなかが生じて発症する39。また同様のメカニズムにて、膝蓋靱帯炎や滑液囊炎など内側骨粗面周囲の軟部組織の炎症も合併しやすく39、内側骨粗面の圧痛・運動時痛・腫脹を主症として、病態によっては長期にスポーツ活動を休止せざるを得ない場合もある。

第2節 ストレッチング

(1) 傷害予防効果

ストレッチングはリハビリテーションなどの医療現場に加え、一般市民が手軽に行える健康法として広く普及している。またスポーツ現場においては、過去30年以上にわたって専門家たちが外傷・障害のリスクを減らす方法としてストレッチングを推奨してきた40。だが、最近のストレッチングのスポーツ傷害予防効果に関する多くのSystematic Reviewでは、運動直前に実施するストレッチングは外傷・障害を予防するようにはみえないと結論付けている40, 21, 30, 42, 46, 60。さらにThackerら50は柔軟性に関する研究の大規模な見直しを行い、1950年代までなのかのぼって361件の論文を調べ、ストレッチング（関節可動域の拡大など）と傷害予防の間には、ほとんど関連はないとしている。従って、ストレッチングや関節可動域の拡大に受傷率を下げる効果があるという説には、ほとんど根拠がないということになる。

しかし、前述したSystematic Reviewは運動直前に実施されるストレッチングの傷害予防効果を対象としている。さらにRandomized Controlled Trialで運動後に実施さ
れるストレッチングの傷害予防効果を示した論文は少ない 1),10),12),21)。Jamtvedt ら 21)は運動前後のストレッチングの傷害予防効果はなかったとする一方で、筋腱などの軟部組織系の傷害、腰背部や下肢の障害リスクはコントロール群と比べて 25%減少したとしている。加えて、これまでのストレッチングのスポーツ傷害予防の調査は比較的管理が容易である軍隊や消防士、大学生や高校生、成人したアスリートが多く、中学生以下を対象にしたものに至ってはみあたらない。そのため、さらなる研究でストレッチングプロトコールの最適な強度・頻度・期間や実施タイミングを調査することが期待されている 30),40)。
第3章 目的

本研究は、オスグッド病の発症予防プログラム開発の一助とするために、成長期サッカー選手の大腿前面部の柔軟性改善・回復に有効なストレッチングの実施方法とタイミングを検証することを目的とした。
第 4 章 方法
第 1 節 ストレッチングの即時効果に関する研究 —運動前—

(1) 対象者

対象者は、I 県の中学校サッカー部に所属する成長期男子サッカー選手 40 名（平均年齢 13.2±0.4 歳、身長 158.5±9.4cm、体重 47.1±8.5kg、BMI 18.6±2.0、競技経験 4.2 ±1.5 年、ポジションはフィールドプレーヤー）とした。成長期の定義は、村田33が提唱する身長成長速度曲線を用い、Phase II および III とした（図 1）。小学校 4 年生からの定期的な身体測定結果を事前アンケートにて聞き取り（図 2）、思春期スパート立ち上がり年齢から身長最大発育量年齢までの Phase II 33 名、身長最大発育量年齢から身長の伸びが年 1cm 以内となる最終身長時年齢までの Phase Ⅲ 7 名を対象とした。

対象者には研究に先立って、研究の目的・内容・手順や考えられる危険性などを口頭および文章にて十分に説明を行い、了承を得た上で書面にて同意を得た。また対象者が未成年であるため、中学校サッカー部顧問および保護者にも同様の説明を行い、書面にて同意を得た。なお本研究は、順天堂大学大学院スポーツ健康科学研究科研究等倫理委員会の承認を得て実施した（受付番号：院 26－46）。

(2) 測定項目および方法

運動前の対象者に、ストレッチング介入前に以下の測定を行い、ストレッチング 3 種目 3 群およびコントロール群の計 4 群に分類し（表 1）、ストレッチング介入後に再度測定を行った。

a) 大腿四頭筋スティフネス（踵臀距離 50、以下 HBD と略す）の測定：被験者に腹臥位をとらせ、検者が足部を把持し膝関節を屈曲して股部と踵骨の距離を定規で測定した（図 3）。全被験者に対し同一検者が測定を行った。

b) 膝関節屈曲可動域（以下、ROM と略す）の測定：日本整形外科学会・日本リハビリテーション医学会が制定したものに準じ37、被験者に背臥位をとらせ、ゴニオメーターを用い ROM を測定した（図 4）。股関節屈曲位で基本軸は大腿骨、移動軸は腓骨とし、全被験者に対し同一検者が測定を行った。

c) 大腿四頭筋 筋硬度（以下、筋硬度と略す）の測定：木下ら17の方法に準じて生
体組織硬度計(井元製作所製、PEK・1)を用いた。被験者に背臥位をとらせ、膝蓋骨上綫から骨盤の上腸骨棘までメジャーを当て、その距離の中点の大腿直筋上に生体組織硬度計を押し当て、被験者が脱力した状態で測定した（図5）。全被験者に対し同一検者が測定を行った。

(3) ストレッチング方法
以下の3つの手法を用いた。実施時間はすべての手法で20秒3セットとした。a)

a) 側臥位でのセルフストレッチング（以下、側臥位群と略す）： 林の方法に準じ、実施者は脛・膝関節屈曲位の側臥位となる。左側臥位で右大腿前面をストレッチングする場合、まず右上肢で右足関節を把持し、右膝関節最大屈曲位とする。右膝関節最大屈曲位のまま股関節伸展し、左腕部で右大腿遠位部を押さえつける（図6）。

b) パートナーストレッチング（以下、PS群と略す）： 2人1組で実施し、HBD測定時と同様に大腿前面部に伸長感が出るように、側部を臀部に近づける（図7）。

c) 背臥位でのセルフストレッチング（以下、背臥位群と略す）： スポーツ現場で最も広く浸透している、大腿前面部のストレッチングの1つである。実施者は長坐位で膝関節屈曲し、その状態から体幹を後方に倒す（図8）。

(4) 統計処理
統計処理はIBM社製SPSS Statistics (Version22)を用い、蹴り足（利き足）・転足（非利き足）それぞれのストレッチング前後の群内比較をWilcoxonの符号付き順位和検定、ストレッチング前後の各群間における測定値の差の比較にKruskal-Wallis検定を用いた。また、各群間の対象者の身体特性および介入前の測定値ベースラインの比較にはKruskal-Wallis検定を用いた。なお、有意水準はすべて危険率5%未満とした。

第2節 ストレッチングの即時効果に関する研究－運動－

(1) 対象者
本研究の対象者は、I県の中学校サッカー部に所属する成長期男子サッカー選手40名（平均年齢13.5±0.5歳、身長161.0±8.7cm、体重49.0±8.1kg、BMI18.8±1.7、
競技経験 4.1±1.8 年、ポジションはフィールドプレーヤーとした。成長期の定義は身長成長速度曲線 ⑧を用い、思春期スパート立ち上がり年齢から身長最大発育量年齢までの Phase II 28 名、身長最大発育量年齢から身長の伸びが年 1cm 以内となる最終身長時年齢までの Phase III 12 名を対象とした。

対象者には研究に先立って、研究の目的・内容・手順や考えられる危険性などを口頭および文章にて十分に説明を行い、了承を得た上で書面にて同意を得た。また対象者が未成年であるため、中学校サッカー部顧問および保護者にも同様の説明を行い、書面にて同意を得た。なお本研究は、順天堂大学大学院スポーツ健康科学研究科研究等倫理委員会の承認を得て実施した（受付番号：院 26－46）。

（2）測定項目および方法

運動後の対象者に対し、同様の方法でストレッチングの介入前に ROM・HBD・筋硬度を測定した。その後、ストレッチング 3 種目 3 群およびコントロール群の計 4 群に分類し（表 2）、ストレッチングの介入後に再度測定を行った。なお、運動を行っている時間はすべての群で 3 時間程度とした。

（3）統計処理

統計処理は IBM 社製 SPSS Statistics (Version22) を用い、蹴り足（利き足）・軸足（非利き足）それぞれのストレッチング前後の群内比較を Wilcoxon の符号付き順位和検定、ストレッチング前後での各群間における測定値の差の比較 ⑨に Kruskal-Wallis 検定を用いた。また、各群間の対象者の身体特性および介入前の測定値ベースラインの比較には Kruskal-Wallis 検定を用いた。なお、有意水準はすべて危険率 5％未満とした。

第 3 節 ストレッチングの実施タイミングに関する研究

（1）対象者

本研究の対象者は、I 県の中学校サッカー部に所属する成長期男子サッカー選手 74名（平均年齢 12.3±0.5 歳、身長 152.1±7.7cm、体重 41.8±7.2kg、BMI18.0±2.0、競技経験 4.4±1.4 年、ポジションはフィールドプレーヤー）とした。成長期の定義は身長成長速度曲線 ⑧を用い、思春期スパート立ち上がり年齢から身長最大発育量年齢までの Phase II 69 名、身長最大発育量年齢から身長の伸びが年 1cm 以内となる最終身長時
年齢までの Phase III 名を対象とした。
対象者には研究に先立って、研究の目的・内容・手順や考えられる危険性などを口頭および文章にて十分に説明を行い、了承を得た上で書面にて同意を得た。また対象者が未成年であるため、中学校サッカー部顧問および保護者とも同様の説明を行い、書面にて同意を得た。なお本研究は、順天堂大学大学院スポーツ健康科学研究科研究等倫理委員会の承認を得て実施した（受付番号；院 26－46）。

(2) 測定項目および方法
8 週間のストレッチング介入前の対象者に対し、同様の方法で HBD ・ ROM ・筋硬度の測定、また日本体育協会の身体測定方法に準じ 12）身長・体重を測定した。ストレッチングの実施タイミング別に運動前群・運動後群・就寝前群の 3 群に分類し (表 3), 8 週間のストレッチング介入後に再度測定を行った。また運動前群と運動後群には活動記録表(図 9)の記載、就寝前群にはそれに加えて各個人に就寝前のストレッチング実施記録表(図 10)をつけてもらった。介入选間に練習を 2 日以上休む傷害 20）（医療機関で診断されたもの）を負った選手や、就寝前のストレッチング実施日数がチーム活動日数の 7 割未満だった選手はドロップアウトとした。倫理上の問題から、普段チームで行っているストレッチングやトレーニングには制限をつけず、介入ストレッチングは指定したタイミングでのみ実施してもらった。

(3) ストレッチング方法
ストレッチングの即時効果に関する研究において、大腿前面の筋群に対し柔軟性の改善・回復効果が有効であった側臥位でのストレッチング (図 6) を用い、実施時間は 20秒 3 セットとした 21）。

(4) 統計処理
統計処理は IBM 社製 SPSS Statistics (Version 22) を用い、蹴り足 (利き足)・軸足 (非利き足)それぞれの介入前後の群内比較を Wilcoxon の符号付き順位和検定、ストレッチング前後の各群間における測定値の差の比較 21）に Kruskal-Wallis 検定を用いた。また、各群間の対象者の身体特性および介入前の測定値基準ラインの比較には Kruskal-Wallis 検定を用いた。なお、有意水準はすべて危険率 5% 未満とした。
第 5 章 結果

第 1 節 ストレッチングの即時効果に関する研究 —運動前—

(1) 身体特性および介入前測定値ベースライン

各群間における平均年齢・身長・体重・BMI・競技経験に有意差はみられなかった (表 1)。また、介入前の ROM（膝関節屈曲可動域）・HBD（踵脛距離）・筋硬度（大腿四頭筋筋硬度）の測定値においても各群間で有意差はみられなかった。

(2) ストレッチング前後の群内比較（表 4）

a) 側臥位群（側臥位でのセルフストレッチング）における群内比較：蹴り足 ROM で介入前 138.0±4.2° から 141.5±5.3° (p<0.05)、蹴り足 HBD で 15.6±3.6cm から 11.0±3.1cm (p<0.01)、軸足 HBD で 14.7±3.7cm から 10.2±3.0cm (p<0.01) 有意な ROM 増加と HBD 減少がみられた。

その他の項目には有意差はみられなかった。

b) PS 群（パートナーストレッチング）における群内比較：蹴り足 ROM で介入前 137.5±4.2° から 143.0±4.8° (p<0.01)、軸足 ROM で 137.5±4.9° から 141.0±3.2° (p<0.05)、蹴り足 HBD で 15.7±3.6cm から 13.5±3.4cm (p<0.01)、軸足 HBD で 16.4±3.0cm から 13.4±3.0cm (p<0.01)、蹴り足筋硬度で 54.2±2.0 から 53.1±2.2 (p<0.05) 有意な ROM 増加と HBD・筋硬度の減少がみられた。

軸足筋硬度には有意差はみられなかった。

c) 背臥位群（背臥位でのセルフストレッチング）における群内比較：背臥位群や PS 群と同様の傾向はみられたが、すべての項目で有意差はみられなかった。

d) コントロール群における群内比較：すべての項目で有意差はみられなかった。

(3) ストレッチング前後の群間比較（表 5）

介入前後の差は、蹴り足 ROM では PS 群（5.5±1.6°）は背臥位群（1.5±3.4°）やコントロール群（0.5±1.6°）と比較して有意差がみられた（それぞれ p<0.05、p<0.01）。蹴り足 HBD（図 11）では側臥位群（4.6±1.6cm）は背臥位群（1.3±2.1cm）やコントロール群（1.5±2.0cm）と有意差がみられた（p<0.05）。
ール群（0.0±0.5cm）と比較して有意差がみられた（それぞれ p<0.05, p<0.01）。また PS 群（2.2±1.9cm）はコントロール群と比較して有意差がみられた（p<0.05）。

軸足 HBD（図 12）においても側臥位群（4.5±1.6cm）や PS 群（3.0±1.8）は背臥位群（1.2±2.2cm）、コントロール群（0.3±0.4cm）と比較して同様の結果であった。

筋硬度では蹴り足のみ、側臥位群（1.0±1.5）と PS 群（−1.1±1.3）で有意差がみられた（p<0.05）。

第 2 節 ストレッチングの即時効果に関する研究 一運動後一

（1）身体特性および介入前測定値ベースライン

各群間における平均年齢・身長・体重・BMI・筋力の有意差はみられなかった（表 2）。また介入前の ROM・HBD・筋硬度の測定値においても各群間で有意差はみられなかった。

（2）ストレッチング前後の群内比較（表 6）

a）側臥位群における群内比較：蹴り足 ROM で介入前 135.0±4.1° から 142.5±4.9°（p<0.01）、軸足 ROM で 136.5±3.4° から 141.0±4.6°（p<0.05）、蹴り足 HBD で 17.9±3.1cm から 13.8±3.0cm（p<0.01）、軸足 HBD で 17.8±2.5cm から 13.3±2.6cm（p<0.01）、蹴り足筋硬度で 55.4±2.0 から 54.2±1.8（p<0.05）と有意な ROM 増加と HBD・筋硬度の減少がみられた。

軸足筋硬度には有意差はみられなかった。

b）PS 群における群内比較：蹴り足 ROM で介入前 136.5±4.1° から 140.5±5.5°（p<0.05）、軸足 ROM で 135.0±3.3° から 141.0±4.6°（p<0.01）、蹴り足 HBD で 17.9±2.5cm から 14.7±3.9cm（p<0.01）、軸足 HBD で 18.6±2.5cm から 15.5±4.4cm（p<0.01）と有意な ROM 増加と HBD 減少がみられた。

筋硬度には有意差はみられなかった。

c）背臥位群における群内比較：蹴り足 HBD で 15.0±1.9cm から 13.5±2.3cm（p<0.01）、軸足 HBD で 16.2±1.8cm から 13.2±2.3cm（p<0.05）と有意な HBD 減少がみられた。その他の項目には有意差はみられなかった。
d) コントロール群における群内比較：すべての項目で有意差はみられなかった。

(3) ストレッチング前後の群間比較（表7）

介入前後の差は、蹴り足 ROM で側臥位群（7.5±4.9°）は背臥位群（0.5±2.8°）やコントロール群（0.5±1.6°）と比較して有意差がみられた（p<0.01）。

転足 ROM では PS 群（6.0±4.6°）は背臥位群（1.0±2.1°）やコントロール群（1.0±2.1°）と比較して有意差がみられた（p<0.05）。

蹴り足 HBD（図13）では、側臥位群（4.1±1.7cm）は背臥位群（1.5±1.2cm）やコントロール群（0.1±0.2cm）と比較して有意差がみられた（それぞれ p<0.05、p<0.01）。また PS 群（3.3±2.8cm）はコントロール群と比較して有意差がみられた（p<0.01）。

転足 HBD（図14）においては側臥位群（4.5±1.6cm）、PS 群（3.0±1.8）、背臥位群（1.2±2.2cm）の3群共に、コントロール群（0.3±0.4cm）と比較して有意差がみられた（それぞれ p<0.01、p<0.05、p<0.05）。

筋硬度では有意差はみられなかった。

第3節 ストレッチングの実施タイミングに関する研究

(1) 介入前後の対象者フローチャート（図15）

a) 運動前群における対象者数の変化：介入前は22名であった。介入期間中に内転筋肉離れ1名、アキレス腱炎1名が医療機関で診断され、当日欠席1名と合わせて計3名をドロップアウトとし、19名を運動前群の対象者とした。

b) 運動後群における対象者数の変化：介入前は24名であった。介入期間中に下腿肉離れ1名、前腕骨折1名が医療機関で診断され、当日欠席1名と合わせて計3名をドロップアウトとし、21名を運動後群の対象者とした。

c) 就寝前群における対象者数の変化：介入前は28名であった。介入期間中に足関節挫挫2名が医療機関で診断された。当日欠席3名と就寝前のストレッチング実施回数がチーム活動日数の7割に満たなかった4名の計9名をドロップアウトとし、19名を就寝前群の対象者とした。
(2) 身体測定および介入前測定値ベースライン

各群間における平均年齢・身長・体重・BMI・競技経験・チーム総活動時間に有意差はみられなかった（表8）。また介入前のROM（膝関節屈曲可動域）、HBD（踵臀距離）、筋硬度（大腿四頭筋 筋硬度）の測定値ベースラインにおいても各群間で有意な差はみられなかった。

(3) ストレッチング前後の群内比較（表9）

a) 運動前群における群内比較：蹴り足 HBD で 12.9±3.6cm から 10.3±2.7cm (p<0.01)、軸足 HBD で 13.8±3.9cm から 10.4±2.5cm (p<0.01)、蹴り足筋硬度で 54.2±3.9 から 56.6±2.6 (p<0.05)と有意な HBD 減少と筋硬度増加がみられた。

その他の項目には有意差はみられなかった。

b) 運動後群における群内比較：蹴り足 ROM で介入前 137.4±3.7° から 139.3±3.3° (p<0.05)、蹴り足 HBD で 15.1±2.6cm から 9.6±2.1cm (p<0.01)、軸足 HBD で 15.6±2.5cm から 9.6±2.4cm (p<0.01)と有意な ROM 増加と HBD 減少がみられた。

筋硬度には有意差はみられなかった。

c) 就寝前群における群内比較：蹴り足 HBD で 15.1±2.6cm から 7.3±2.4cm (p<0.01)、軸足 HBD で 15.3±2.6cm から 7.4±2.0cm (p<0.01)、蹴り足筋硬度で 54.9±3.0 から 57.1±2.5 (p<0.05)と有意な HBD 減少と筋硬度増加がみられた。

その他の項目には有意差はみられなかった。

(4) ストレッチング前後の群間比較（表10）

介入前後の差は、ROM では有意差がみられなかった。

蹴り足 HBD（図16）では就寝前群（7.8±2.3cm）と運動前群（2.6±2.2cm）や運動後群（5.5±1.9cm）と比較して有意差がみられた（それぞれ p<0.01、p<0.05）。また運動後群と比較して運動前群で有意差がみられた (p<0.01)。

軸足 HBD（図17）では運動前群（3.3±2.5cm）と比較して、就寝前群（7.9±2.5cm）に加え運動後群（6.0±1.9cm）においても有意差がみられた (p<0.01)。
筋硬度では軽足のみ運動前群(0.7±2.8)と運動後群(−1.0±2.2)で有意差がみられた(p<0.05)。
第6章 考察

第1節 ストレッチングの即時効果に関する研究

本研究の結果、運動前にストレッチング介入を行った調査において、ROM (膝関節屈曲可動域) は側臥位群戸数足と PS 群 (パートナーストレッチング) の両足で増加し、HBD (種増距離) は側臥位群 (側臥位でのセルフストレッチング) と PS 群の両足で減少がみられた。運動後の介入調査では、ROM・HBD 両項目とも側臥位群と PS 群で有意な変化がみられた。群間比較では運動前後ともにコントロール群と比較して、側臥位群と PS 群で HBD の有意な減少がみられた。

ストレッチングが関節可動域や柔軟性に影響を与えるメカニズムは基本的に 2 つ存在し、それぞれが単独で、または 2 つ組み合わさって影響を及ぼすと考えられている。1 つ目のストレッチングが軟部組織 (筋や靭帯、関節包などの合組織) の構造と性質を変えることで ROM を変化させ、2 つ目としては痛みの耐性 (感覚閾値) が上昇するとというものである。29,30,31,32,33。ストレッチングがどの関節角度まで行えるかはストレッチングをされている人間の感覚、あるいは耐久性によって規定される、更には力学的な変化よりも個人の疼痛耐性上昇の違いにより受ける影響の方が大きいという報告もある。そのため、パートナーの押し程度や加減によって左右される PS 群や、セルフストレッチングでも制的に股関節伸展位を保持する側臥位群と関節可動域や柔軟性の改善・回復に効果がみられたと考える。また HBD の測定方法は、二関節筋である大腿四頭筋を含めた大腿四頭筋や大腿筋膜筋の影響を大きく受ける。特に推奨する側臥位でのストレッチングは骨盤前傾制御、大腿直筋・大腿筋膜筋の伸張効果が期待できる 11)、骨盤前傾や腰椎前傾、股関節屈曲内旋などの代償動作がでやすい背臥位でのストレッチングと比較して、柔軟性の改善・回復が大腿前面の筋群に対し有効であったと考えられる。

ROM や HBD の改善・回復に伴い、筋硬度 (大腿四頭筋筋硬度) の減少も起こると調査前に仮説を立てていたが、筋硬度は運動前では PS 群の戸数足、運動後では側臥位群の戸数足でのみ減少がみられた。オシグッド病に代表される膝伸展機能障害は、身長 (大腿骨長) の増加に伴う大腿前面のスティフネス及び筋硬度上昇が影響することが示唆されている。17,41。そのため、ストレッチングの関節可動域や柔軟性の拡大効果が組織の硬度の低下に関連していることが報告されていることからも 9)、オシグッド病発症前および罹患時に筋硬度上昇を抑える効果が期待できた。しかしその一方で、組織の
粘性が変化しても、筋硬度と弾性はワークアップの一環として運動直前に実施されるストレッチングには、ほとんど影響を受けていないという報告もあるが、ストレッチングの筋硬度に与える影響に関しては一定の見解を得られていない。また、本研究でも使用した押し込み式の筋硬度計は、解剖学的に脂肪組織や上皮・真皮、その下にある表層の密線維性結合組織帯や深部の膜組織など、筋以外の影響を目的の筋に達するまでに大きく受けるため、純粋に目的の筋だけの硬度を測定できているかは疑問が残る。近年では組織の相対的な硬さを超音波画像上に局所的な色分布として示す技術であるReal-time Tissue Elastography法を用いて、小中学生の膝蓋腱の弾性を調査した報告もされており、今後はより精度の高い方法でストレッチングの筋硬度に与える影響を調査する必要があると考える。

第2節 ストレッチングの実施タイミングに関する研究

本研究の結果、ROMはすべての群において増加傾向はみられたものの、運動後群の健足のみで有意に増加し、ストレッチングがROM変化に与える長期的な効果は低かった。ストレッチング後に関節可動域の改善がしばしばみられるが、これは一定の伸張を加えていると抵抗が減少するstress relaxationによって起こると考えられている。しかし、この変化は一時的なもので時間が経つとストレッチング前の状態に戻るとされており、本研究の8週間の介入後の再測定は起床後にグラウンドに来て何もしていない状態で行っているため、ROMに関してはストレッチング実施直後の即時効果が継続していない可能性が考えられる。反対にHBDの群内比較ではすべての群において8週間の介入後に有意な減少がみられた。HBDはROMの測定時と異なり、膝関節の関節包や靭帯などの軟部組織よりも大腿直筋や大腿筋膜張筋などの二関節筋の影響を大きく受けるため、8週間のストレッチングにより、関節筋の伸張性が介入前より増大したと推察する。またHBDの群間比較では運動前群と比べて、運動後群や就寝前群より改善効果がみられ、特にそれは就寝前群で改善が著明であった。一つの要因として、運動前群はストレッチング実施後に練習を試合を行っており、サッカー選手はトレーニング後に筋硬度が上昇することが示唆されていることからも、ストレッチングの柔軟性改善・回復効果がその後のトレーニングにより相殺されたと推察する。また、Torresらは選心性運動課題後にストレッチングを行わせ、単発の実施よりも繰り返し行わせることでスティフネスの回復がみられたとし、加えてストレッチングの中止
後には長期間の効果はなく、毎日ストレッチングを繰り返し行わせることが筋スティフネスからの解放に有効かもしれないと結論付けている。このことからも、練習や試合などのトレーニング後で、さらには一日の生活の中で最もリラクゼーション効果を得ることができる睡眠時間帯の直前に繰り返しストレッチングを実施したことが、柔軟性の改善・回復効果がより大きかった要因であると考える。したがって、成長期サッカー選手に対しては、側臥位でのセルフストレッチングを運動後や就寝前に継続的に促すことが柔軟性の改善・回復に有効であり、今後オスグッド病の予防プログラムを開発する際の一助になると思われる。一方で、ストレッチングの長期効果として筋肥大が報告され、筋断面積が増加すればスティフネスも増大するはずであるが、これらの報告の多くがギプス固定後の運動制限のあった症例（患者）を対象としており、本研究のように継続的に運動を行っている選手に筋肥大が起こるかは調査されていない。さらに本研究では筋肥大に関する評価をしていないため、言及することは難しい。

筋硬度に関しては、群間比較で運動前より運動後で改善効果がみられたものの、反対に群内比較では運動前群と就寝前群の検査では有意に増加し、一定傾向の結果は得られなかった。長期間のストレッチングが筋硬度に与える影響を調査した研究では、組織の粘性が変化しても筋の硬度と弾性は3〜4週間のストレッチングにはほとんど影響を受けていないとしている。長期間のストレッチング介入が筋硬度に与える影響に関しては即時効果値、脂肪組織や皮下・真皮、その下にある表層の密結合組織による組織密度の深部の密結合組織など、目的の筋以外の影響を受けづらい、精度の高い筋硬度測定方法での調査が必要と考える。
第7章 結論

成長期サッカー選手における大腿前面部の柔軟性改善・回復に有効なストレッチングの種類は側臥位でのストレッチングとパートナーハストレッチングであった。セルフストレッチングであれば、背臥位よりも側臥位で実施する方が有効であることが明らかになった。

ストレッチングの実施タイミングでは運動前よりも運動後、さらには就寝前に実施する方がストレッチングによる柔軟性の改善・回復効果が大きかった。成長期サッカー選手に対しては、運動後や就寝前に継続的なストレッチング実施を促すことが重要である。
第8章 研究限界

本研究は対象数が少なく、統計的な有意差はなかったものの、介入前計測値のベースラインで差がみられた。また対象者は中学校の1・2年生を対象にしているため、寮生活などでコントロールされたチームがなかった。さらに対象者数を集めるために、複数のチームから協力を得たため、練習内容の違いなどの交絡因子をとり扱うことができず、厳密なRandomized Controlled Trialではなかったことが、今回の研究限界である。
第9章 要約

【目的】本研究は、オスグッド病の発症予防プログラム開発の一助とするために、成長期サッカー選手の大脛前面部の柔軟性改善・回復に有効なストレッチングの実施方法とタイミングを検証することを目的とした。

【方法】ストレッチングの即時効果に関する研究は、成長期男子サッカー選手80名(年齢13.4±0.5歳)を各10名4群(セルフストレッチング；側臥位群および背臥位群、パートナーストレッチング；PS群、コントロール群)に分類し、筋疲労のない運動前と筋疲労状態の運動後に各種ストレッチングを行わせた。

ストレッチングの実施タイミングに関する研究では、成長期男子サッカー選手74名(年齢12.3±0.5歳)を実施タイミング別に運動前群22名、運動後群24名、就寝前群28名に分類し、側臥位でのセルフストレッチングを8週間介入した。

膝関節屈曲角度(ROM)、踵足距離、筋硬度をストレッチングの前後および8週間のストレッチング介入前後で測定し、各群における介入前後の変化を群内比較、各群の介入前後の変化を群間で比較したものを見たものを群間比較として、検討を行った。

【結果】運動前後ともに、側臥位群とPS群においてストレッチング後に踵足距離の減少(側臥位群 運動前 蹴り足15.6±3.6→11.0±3.1cm、蹴り足14.7±3.7→10.2±3.0cm、運動後 蹴り足17.9±3.1→13.8±3.0cm、蹴り足17.8±2.5→13.3±2.6cm)とROMの増加がみられた(P<0.05)。筋硬度は運動前でPS群蹴り足、運動後で側臥位群蹴り足において有意に低下した(P<0.05)。また群間比較でも、運動前後とも側臥位群およびPS群の踵足距離がコントロール群と比較して有意に減少していた(P<0.05)。

8週間のストレッチング介入では、練習を2日以上休む傷害を負ったものの、就寝前のストレッチング実施日数がチーム活動日数の7割に満たなかったものは除外し、運動前群19名、運動後群21名、就寝前群19名が対象となった。

すべての群において8週間のストレッチング介入後に踵足距離の減少(運動前群 蹴り足12.9±3.6→10.3±2.7cm、蹴り足13.8±3.9→10.4±2.5cm、運動後群 蹴り足15.1±2.6→9.6±2.1cm、蹴り足15.6±2.5→9.6±2.4cm、就寝前群 蹴り足15.1±2.6→7.3±2.4cm、蹴り足15.3±2.6→7.4±2.0cm)がみられた(P<0.01)。ROMは運動後群の蹴り足のみで増加し、筋硬度は運動前群と就寝前群の蹴り足で増加した(P<0.05)。また群間比較では、就寝前群および運動後群の踵足距離が運動前群と比較して有意に減少していた(P<0.01)。
【結論】成長期サッカー選手における大腿前面部の柔軟性の改善・回復に有効なストレッチングの種類は側臥位でのストレッチングとパートナーストレッチングであった。セルフストレッチングであれば、背臥位よりも側臥位で実施する方が有効であることが明らかになった。

ストレッチングの実施タイミングでは運動前よりも運動後、さらには就寝前に実施する方がストレッチングによる柔軟性の改善・回復効果が大きかった。成長期サッカー選手に対しては、運動後や就寝前に継続的なストレッチング実施を促すことが重要である。
引用文献

19) http://www.jfa.jp/about_jfa/organization/databox/player.html

Abstract

The effect of stretching on adolescent soccer players

[Purpose] The aims of this study were to identify the immediate effect of the three types and three different implementation timings of stretching techniques, to contribute to program development to prevent Osgood-Schlatter disease for adolescent soccer players.

[Methods] 80 adolescent male soccer players (Age: 13.4 ± 0.5 yrs) were classified into four groups (partner-stretching: PS group, self-stretching: lateral position group and the supine group, the control group). Half of each group implemented stretching before training, and the other half implemented stretching after training.

74 adolescent male soccer players (Age: 12.3 ± 0.5 yrs) were classified into three groups and implemented lateral position stretching in different timings (pre-training group 22 players, post-training group 24 players, before bedtime group 28 players) for 8 weeks.

Range of motion (ROM) of knee flexion, heel buttock distance (HBD), and muscle hardness were measured before and after stretching, and after 8 weeks of stretching intervention. Those values before and after stretching intervention were compared in each group. In addition, the difference among the four different stretching groups and the three different timings of stretches were examined.

[Result] The lateral position group and the PS group more significantly improved HBD (lateral position group before training: dominant leg 15.6±3.6→11.0±3.1cm, non-dominant leg 14.7±3.7→10.2±3.0cm, after training: dominant leg 17.9±3.1→13.8±3.0cm, non-dominant leg 17.8±2.5→13.3±2.6cm) and ROM than before stretching(P<0.05). Muscle hardness was significantly decreased in a non-dominant leg of the PS group before training and in a dominant leg of the lateral position group after training (P<0.05). Also HBD of the lateral position group and PS group were significantly decreased by comparing with the control group before and after training (P<0.05).
After 8 weeks of stretching intervention, there were 19 pre-training group players, 21 post-training group players, and 19 before bedtime group players (excluded injured players who had more than two days of rest and players in before bedtime group who completed stretching implementation less than 70% of the team activity days). HBD was significantly improved after intervention in all groups (pre-training group: dominant leg 12.9±3.6→10.3±2.7cm, non-dominant leg 13.8±3.9→10.4±2.5cm, post-training group: dominant leg 15.1±2.6→9.6±2.1cm, non-dominant leg 15.6±2.5→9.6±2.4cm, before bedtime group: dominant leg 15.1 ±2.6→7.3±2.4cm, non-dominant leg 15.3±2.6→7.4±2.0cm, P<0.01). ROM was significantly increased in a dominant leg of the post-training group. Muscle hardness was significantly increased in a dominant leg of the pre-training group and before bedtime group (P<0.05). HBD of the post-training group and before bedtime group were significantly improved compared with the pre-training group (P<0.05).

[Conclusion] The self-stretching in lateral position could more improve and recovery a flexibility of Quadriceps in adolescent soccer players than supine position.

The pre-training group showed more improvement than the post-training group, and the before bedtime group showed the best improvement of all of the groups.
謝辞

本論文作成にあたり、多大なるご指導および御校閲を賜りました瀧庭景栄教授には心より感謝申し上げます。また、黒田教之助教授におかれましても大変お忙しい中、ご指導頂き誠にありがとうございます。瀧庭研究室の学友諸兄のミーティングでのご指導もありがとうございました。Abstract 作成におきまして、英語翻訳の御指導をしてくださった Philadelphia Phillies の樫井剛之氏にも感謝いたします。

本論文の作成に際しまして、測定にご協力頂いた茨城県日立第一高等学校中等部、多賀中学校、駒王中学校、締岡中学校、那珂湊中学校、豊里中学校、旭中学校、波崎第二中学校、茨城県 U14 トレセンの選手には大変感謝いたします。また、測定にあたり快諾して頂いた、茨城県ユースダイレクター照沼祐治教諭や各中学校・寺門寛教諭、荒川英俊教諭、木村剛教諭、五上靖隆教諭、黒澤美博教諭、大和田哲也教諭、高根澤良一教諭、大槻敏之教諭、小林博教諭には厚く御礼申し上げます。

本研究がサッカーの現場における、スポーツ障害予防に少しでも寄与するものとなれば幸いです。

最後に大学院進学にあたり、理解を示してくださった両親に感謝致します。
図1 身長成長速度曲線

Phase 1
思春期スパートの立ち上がりまで

Phase 2
1から身長最大発育量を示す年齢まで

Phase 3
2から最終身長時年齢（1cm/年以内）

Phase 4
それ以降
研究参加者個人問診票（201年 月 日）

※親御さんと一緒に記入してください。

<table>
<thead>
<tr>
<th>病歴</th>
<th>生年月日</th>
<th>中学校</th>
</tr>
</thead>
<tbody>
<tr>
<td>例（足首）</td>
<td>足関節挫挫</td>
<td>中1</td>
</tr>
<tr>
<td>例（頭）</td>
<td>頭痛症</td>
<td>中2</td>
</tr>
<tr>
<td>例（腰）</td>
<td>オスグッド</td>
<td>小6</td>
</tr>
</tbody>
</table>

②現病歴（現在、痛いところがあれば数えてください）

<table>
<thead>
<tr>
<th>病歴</th>
<th>診断名又はどういった症状で</th>
<th>いつから</th>
</tr>
</thead>
<tbody>
<tr>
<td>例（頭）</td>
<td>頭を後ろに反ると</td>
<td>中1</td>
</tr>
</tbody>
</table>

③学校で4ヶ月に行われている身体測定の数値をわかる範囲で数えてください。

<table>
<thead>
<tr>
<th>年齢</th>
<th>身長</th>
<th>体重</th>
</tr>
</thead>
<tbody>
<tr>
<td>小学4年生</td>
<td>cm</td>
<td>kg</td>
</tr>
<tr>
<td>小学5年生</td>
<td>cm</td>
<td>kg</td>
</tr>
<tr>
<td>小学6年生</td>
<td>cm</td>
<td>kg</td>
</tr>
<tr>
<td>中学1年生</td>
<td>cm</td>
<td>kg</td>
</tr>
<tr>
<td>中学2年生</td>
<td>cm</td>
<td>kg</td>
</tr>
<tr>
<td>中学3年生</td>
<td>cm</td>
<td>kg</td>
</tr>
</tbody>
</table>

図2 研究実施前アンケート
表1 対象者の基礎データ（運動前介入）

<table>
<thead>
<tr>
<th>ストレッチング即時効果 運動前介入</th>
<th>突出位群</th>
<th>PS群</th>
<th>背突出位群</th>
<th>コントロール群</th>
</tr>
</thead>
<tbody>
<tr>
<td>人数</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>平均年齢（歳）</td>
<td>13.2±0.4</td>
<td>13.3±0.5</td>
<td>13.3±0.5</td>
<td>13.0±0.0</td>
</tr>
<tr>
<td>平均身長（cm）</td>
<td>153.1±10.6</td>
<td>160.7±8.2</td>
<td>161.3±4.0</td>
<td>159.0±11.8</td>
</tr>
<tr>
<td>平均体重（kg）</td>
<td>44.7±10.7</td>
<td>50.1±8.7</td>
<td>46.2±4.4</td>
<td>47.4±9.2</td>
</tr>
<tr>
<td>平均BMI</td>
<td>18.8±2.2</td>
<td>19.3±2.6</td>
<td>17.8±1.5</td>
<td>18.6±1.7</td>
</tr>
<tr>
<td>平均競技経験（年）</td>
<td>3.8±1.2</td>
<td>4.6±1.5</td>
<td>4.3±1.7</td>
<td>4.0±1.8</td>
</tr>
</tbody>
</table>

Kruskal-Wallis検定 N.S.
図 3 足背距離 (HBD)

図 4 膝関節屈曲可動域 (ROM)

図 5 大腿四頭筋 筋硬度 (筋硬度)
図6 側臥位でのストレッチング

図7 パートナーストレッチング (PS)

図8 背臥位でのストレッチング
表2 対象者の基礎データ（運動後介入）

<table>
<thead>
<tr>
<th>ストレッチング即時効果</th>
<th>側臥位群</th>
<th>PS群</th>
<th>背臥位群</th>
<th>コントロール群</th>
</tr>
</thead>
<tbody>
<tr>
<td>人数</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>平均年齢(歳)</td>
<td>13.8±0.4</td>
<td>13.5±0.5</td>
<td>13.5±0.5</td>
<td>13.2±0.4</td>
</tr>
<tr>
<td>平均身長(cm)</td>
<td>160.8±7.9</td>
<td>163.5±5.3</td>
<td>160.1±8.3</td>
<td>159.7±12.5</td>
</tr>
<tr>
<td>平均体重(kg)</td>
<td>50.3±9.6</td>
<td>49.5±5.6</td>
<td>47.4±6.7</td>
<td>48.9±10.6</td>
</tr>
<tr>
<td>平均BMI</td>
<td>19.3±2.2</td>
<td>18.5±1.3</td>
<td>18.4±1.3</td>
<td>19.0±1.9</td>
</tr>
<tr>
<td>平均競技経験(年)</td>
<td>4.1±1.3</td>
<td>3.9±1.9</td>
<td>4.5±2.4</td>
<td>3.9±1.7</td>
</tr>
</tbody>
</table>

Kruskal-Wallis検定 N.S.
表3 対象者の基礎データ（8週間介入前）

<table>
<thead>
<tr>
<th>ストレッチング実施タイミング</th>
<th>運動前群</th>
<th>運動後群</th>
<th>就寝前群</th>
</tr>
</thead>
<tbody>
<tr>
<td>人数</td>
<td>22</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>平均年齢（歳）</td>
<td>12.2±0.4</td>
<td>12.4±0.6</td>
<td>12.2±0.4</td>
</tr>
<tr>
<td>平均身長（cm）</td>
<td>150.4±6.9</td>
<td>155.6±7.7</td>
<td>151.0±7.9</td>
</tr>
<tr>
<td>平均体重（kg）</td>
<td>41.0±6.8</td>
<td>43.1±6.3</td>
<td>41.4±8.2</td>
</tr>
<tr>
<td>平均BMI</td>
<td>18.0±1.9</td>
<td>17.8±1.5</td>
<td>18.1±2.3</td>
</tr>
<tr>
<td>平均競技経験（年）</td>
<td>4.7±1.2</td>
<td>3.7±1.8</td>
<td>4.6±0.8</td>
</tr>
</tbody>
</table>

Kruskal-Wallis検定 N.S.
<table>
<thead>
<tr>
<th>月／日</th>
<th>練習／試合</th>
<th>時間</th>
<th>月／日</th>
<th>練習／試合</th>
<th>時間</th>
<th>月／日</th>
<th>練習／試合</th>
<th>時間</th>
<th>月／日</th>
<th>練習／試合</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
<tr>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
<td>1月0日</td>
<td>練習／試合</td>
<td>時間</td>
</tr>
</tbody>
</table>

図9 活動記録表
【寝る前に】にストレッチ
左右各20秒×3セット！！

モモ前のストレッチ

一注意点一

- ベンチは必ず横向き
- 上の足を引っ張る
- 伸ばされて少し痛い
- くらいやっても大丈夫

図10 ストレッチング実施記録表
表4 介入前後の群内比較（運動前介入）

<table>
<thead>
<tr>
<th>運動前介入</th>
<th>ストレッチ前</th>
<th>後</th>
<th>ストレッチ前</th>
<th>後</th>
<th>ストレッチ前</th>
<th>後</th>
<th>ストレッチ前</th>
<th>後</th>
</tr>
</thead>
<tbody>
<tr>
<td>足関節ROM 1°</td>
<td>138.0±4.2</td>
<td>141.5±5.3</td>
<td>137.5±4.2</td>
<td>143.0±4.8</td>
<td>138.0±5.9</td>
<td>139.5±4.4</td>
<td>141.5±5.3</td>
<td>142.0±4.8</td>
</tr>
<tr>
<td>足関節ROM 2°</td>
<td>139.5±5.0</td>
<td>142.5±3.5</td>
<td>137.5±4.9</td>
<td>141.0±3.2</td>
<td>139.5±5.5</td>
<td>141.0±5.7</td>
<td>141.0±5.2</td>
<td>141.0±5.7</td>
</tr>
<tr>
<td>足関節HBD (cm)</td>
<td>15.6±36</td>
<td>11.0±31</td>
<td>15.7±36</td>
<td>13.5±34</td>
<td>16.5±44</td>
<td>15.4±42</td>
<td>135±3.4</td>
<td>135±3.4</td>
</tr>
<tr>
<td>足関節HBD (cm)</td>
<td>14.7±37</td>
<td>10.2±30</td>
<td>16.4±30</td>
<td>13.4±30</td>
<td>17.0±37</td>
<td>15.8±44</td>
<td>14.0±3.1</td>
<td>137±2.9</td>
</tr>
<tr>
<td>足関節筋硬度</td>
<td>520±23</td>
<td>530±32</td>
<td>542±20</td>
<td>531±22</td>
<td>550±28</td>
<td>557±27</td>
<td>54.3±2.1</td>
<td>54.6±2.7</td>
</tr>
<tr>
<td>足関節筋硬度</td>
<td>54.1±36</td>
<td>529±20</td>
<td>550±33</td>
<td>552±32</td>
<td>56.8±3.1</td>
<td>55.7±2.1</td>
<td>55.0±2.4</td>
<td>54.9±2.1</td>
</tr>
</tbody>
</table>

* p<0.05 ** p<0.01
表 5 介入前後の群間比較（運動前介入）

<table>
<thead>
<tr>
<th></th>
<th>側臥位群</th>
<th>PS群</th>
<th>背臥位群</th>
<th>コントロール群</th>
</tr>
</thead>
<tbody>
<tr>
<td>運動前介入差(ストレッチング後-前)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>人数</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>踵り足 ROM(°)</td>
<td>3.5±3.4</td>
<td>5.5±1.6</td>
<td>1.5±3.4</td>
<td>0.5±1.6</td>
</tr>
<tr>
<td>軸足 ROM(°)</td>
<td>3.0±4.8</td>
<td>3.5±3.4</td>
<td>1.5±4.7</td>
<td>0.0±2.4</td>
</tr>
</tbody>
</table>

※HBDのみ前方後

<table>
<thead>
<tr>
<th></th>
<th>側臥位群</th>
<th>PS群</th>
<th>背臥位群</th>
<th>コントロール群</th>
</tr>
</thead>
<tbody>
<tr>
<td>踵り足 HBD(cm)</td>
<td>-4.6±1.6</td>
<td>-2.2±1.9</td>
<td>-1.3±2.1</td>
<td>-0.0±0.5</td>
</tr>
<tr>
<td>軸足 HBD(cm)</td>
<td>-4.5±1.6</td>
<td>-3.0±1.8</td>
<td>-1.2±2.2</td>
<td>-0.3±0.4</td>
</tr>
</tbody>
</table>

Kruskal-Wallis検定 *p<0.05 **p<0.01
図11 介入前後の蹴り足HBD群間比較（運動前介入）

図12 介入前後の軸足HBD群間比較（運動前介入）
表6 介入前後の群内比較（運動後介入）

<table>
<thead>
<tr>
<th>運動後介入</th>
<th>背臥位群 (n=10)</th>
<th>PS群 (n=10)</th>
<th>背臥位群 (n=10)</th>
<th>コントロール群 (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ストレッチ前</td>
<td>後</td>
<td>ストレッチ前</td>
<td>後</td>
</tr>
<tr>
<td>取り足 ROM(°)</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>135.0±4.1</td>
<td>1425±4.9</td>
<td>1365±4.1</td>
<td>1405±5.5</td>
<td>1400±5.3</td>
</tr>
<tr>
<td>腓足 ROM(°)</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>1365±3.4</td>
<td>1410±4.6</td>
<td>1350±3.3</td>
<td>1410±4.6</td>
<td>1395±6.4</td>
</tr>
<tr>
<td>取り足 HBD(cm)</td>
<td>**</td>
<td></td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>179±3.1</td>
<td>138±3.0</td>
<td>179±25</td>
<td>147±39</td>
<td>150±19</td>
</tr>
<tr>
<td>腓足 HBD(cm)</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>178±25</td>
<td>133±26</td>
<td>186±25</td>
<td>155±44</td>
<td>162±18</td>
</tr>
<tr>
<td>取り足筋強度</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>554±2.0</td>
<td>542±1.8</td>
<td>550±3.3</td>
<td>547±32</td>
<td>47.7±3.3</td>
</tr>
<tr>
<td>腓足筋強度</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>56.1±26</td>
<td>55.3±14</td>
<td>56.1±37</td>
<td>55.7±38</td>
<td>48.2±29</td>
</tr>
</tbody>
</table>

Wilcoxon の符号付き順位和検定 *p<0.05 **p<0.01
表7 介入前後の群間比較（運動後介入）

<table>
<thead>
<tr>
<th></th>
<th>側臥位群</th>
<th>PS群</th>
<th>背臥位群</th>
<th>コントロール群</th>
</tr>
</thead>
<tbody>
<tr>
<td>人数</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>蹲り足 ROM(°)</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>7.5±4.9</td>
<td>4.0±3.2</td>
<td>0.5±2.8</td>
<td>0.5±1.6</td>
<td></td>
</tr>
<tr>
<td>転足 ROM(°)</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>4.5±3.7</td>
<td>6.0±4.6</td>
<td>1.0±2.1</td>
<td>1.0±2.1</td>
<td></td>
</tr>
<tr>
<td>蹲り足 HBD(cm)</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>※HBDのみ前後</td>
<td>-4.1±1.7</td>
<td>-3.3±2.8</td>
<td>-1.5±1.2</td>
<td>-0.1±0.2</td>
</tr>
<tr>
<td>転足 HBD(cm)</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>※HBDのみ前後</td>
<td>-4.5±1.8</td>
<td>-3.1±3.4</td>
<td>-3.1±1.6</td>
<td>-0.3±0.4</td>
</tr>
<tr>
<td>蹲り足 硬度</td>
<td>-1.2±1.2</td>
<td>-0.3±1.3</td>
<td>0.1±2.1</td>
<td>-0.2±0.8</td>
</tr>
<tr>
<td>転足 硬度</td>
<td>-0.8±2.6</td>
<td>-0.4±1.6</td>
<td>-1.2±1.8</td>
<td>0.0±0.8</td>
</tr>
</tbody>
</table>

Kruskal-Wallis検定 *p<0.05 **p<0.01
図 13 介入前後の蹴り足 HBD 群間比較（運動後介入）

図 14 介入前後の軸足 HBD 群間比較（運動後介入）
図 15 8 週間介入前後の対象者フローチャート
表 8 8週間介入後の対象者基礎データ

<table>
<thead>
<tr>
<th>ストレッチング実施タイミング</th>
<th>運動前</th>
<th>運動後</th>
<th>就寝前</th>
</tr>
</thead>
<tbody>
<tr>
<td>人数</td>
<td>19</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>平均年齢(歳)</td>
<td>12.2±0.4</td>
<td>12.5±0.6</td>
<td>12.2±0.4</td>
</tr>
<tr>
<td>平均身長(cm)</td>
<td>152.2±6.8</td>
<td>157.6±8.0</td>
<td>151.9±8.9</td>
</tr>
<tr>
<td>身長介入前後の差(cm)</td>
<td>2.6±1.2</td>
<td>2.6±1.7</td>
<td>2.3±1.7</td>
</tr>
<tr>
<td>平均体重(kg)</td>
<td>42.7±7.1</td>
<td>43.6±5.7</td>
<td>40.9±6.4</td>
</tr>
<tr>
<td>体重介入前後の差(kg)</td>
<td>2.3±2.7</td>
<td>1.0±2.6</td>
<td>0.9±0.9</td>
</tr>
<tr>
<td>平均BMI</td>
<td>18.4±2.2</td>
<td>17.5±1.6</td>
<td>17.6±1.3</td>
</tr>
<tr>
<td>平均競技経験(年)</td>
<td>4.8±1.2</td>
<td>3.8±1.9</td>
<td>4.8±0.5</td>
</tr>
<tr>
<td>活動日数/介入日数(日)</td>
<td>57/76</td>
<td>54/84</td>
<td>64/81</td>
</tr>
<tr>
<td>ストレッチ実施日数(日)</td>
<td>50</td>
<td>48</td>
<td>58.2±6.7(基人)</td>
</tr>
<tr>
<td>チーム総活動時間(時)</td>
<td>108.5</td>
<td>103</td>
<td>117</td>
</tr>
</tbody>
</table>

Kruskal-Wallis検定 N.S.
表9 介入前後の群内比較（8週間介入）

<table>
<thead>
<tr>
<th>実施タイミング</th>
<th>運動前群 (n=19)</th>
<th>運動後群 (n=21)</th>
<th>就寝前群 (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>介入前</td>
<td>介入後</td>
<td>介入前</td>
</tr>
<tr>
<td>踝足 ROM(*)</td>
<td>138.2±5.1</td>
<td>138.9±3.9</td>
<td>137.4±3.7</td>
</tr>
<tr>
<td>軸足 ROM(*)</td>
<td>136.3±6.2</td>
<td>138.4±4.1</td>
<td>136.0±4.6</td>
</tr>
<tr>
<td>踝足 HBD(cm)</td>
<td>129±36</td>
<td>103±27</td>
<td>15.1±26</td>
</tr>
<tr>
<td>軸足 HBD(cm)</td>
<td>13.8±39</td>
<td>10.4±25</td>
<td>15.6±25</td>
</tr>
<tr>
<td>踝足筋硬度</td>
<td>54.2±39</td>
<td>56.6±26</td>
<td>55.0±29</td>
</tr>
<tr>
<td>軸足筋硬度</td>
<td>54.6±40</td>
<td>55.4±29</td>
<td>55.4±25</td>
</tr>
</tbody>
</table>

Wilcoxonの符号付き順位和検定 *p<0.05 **p<0.01
表10 介入前後の群間比較（8週間介入）

<table>
<thead>
<tr>
<th>実施タイミング差（介入後-前）</th>
<th>運動前群</th>
<th>運動後群</th>
<th>就寝前群</th>
</tr>
</thead>
<tbody>
<tr>
<td>人数</td>
<td>19</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>踵り足 ROM（°）</td>
<td>0.8±2.2</td>
<td>1.9±3.3</td>
<td>1.3±3.7</td>
</tr>
<tr>
<td>軸足 ROM（°）</td>
<td>2.1±5.1</td>
<td>2.1±5.1</td>
<td>1.6±3.4</td>
</tr>
<tr>
<td>踵り足HBD（cm）</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>※HBDのみ前一後</td>
<td>2.6±2.2</td>
<td>5.5±1.9</td>
<td>7.8±2.3</td>
</tr>
<tr>
<td>軸足HBD（cm）</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>※HBDのみ前一後</td>
<td>3.3±2.5</td>
<td>6.0±1.9</td>
<td>7.9±2.5</td>
</tr>
<tr>
<td>踵り足 硬度</td>
<td>2.4±3.4</td>
<td>0.6±2.6</td>
<td>2.1±2.4</td>
</tr>
<tr>
<td>軸足 硬度</td>
<td>0.7±2.8</td>
<td>-1.0±2.2</td>
<td>0.8±2.0</td>
</tr>
</tbody>
</table>

Kruskal-Wallis検定 *p<0.05 **p<0.01

49
図16 介入前後の蹴り足 HBD 群間比較（8 過間介入）

図17 介入前後の転足 HBD 群間比較（8 過間介入）