Juntendo University, Tokyo, established in 1838.
		
		
		
		
		
		
		
		
		
			- Home
- Research
- Department of Research for Parkinson's Disease
			
			Department of Research for Parkinson's Disease
			
			
			Publication
			
				 Original articles (2000-2024)
				
					- Ikeda A, Meng H, Taniguchi D, Mio M, Funayama M, Nishioka K, Yoshida M, Li Y, Yoshino H, Inoshita T, Shiba-Fukushima K, Okubo Y, Sakurai T, Amo T, Aiba I, Saito Y, Saito Y, Murayama S, Atsuta N, Nakamura R, Tohnai G, Izumi Y, Morita M, Tamura A, Kano O, Oda M, Kuwabara S, Yamashita T, Sone J, Kaji R, Sobue G, Imai Y, Hattori N: CHCHD2 P14L, found in amyotrophic lateral sclerosis, exhibits cytoplasmic mislocalization and alters Ca2+ homeostasis. PNAS Nexus 3, pgae319 (2024)
						  
- Tezuka T, Ishiguro M, Taniguchi D, Osogaguchi E, Shiba-Fukushima K, Ogata J, Ishii R, Ikeda A, Li Y, Yoshino H, Matsui T, Kaida K, Funayama M, Nishioka K, Kumazawa F, Matsubara T, Tsuda H, Saito Y, Murayama S, Imai Y, Hattori N: Clinical characteristics and pathophysiological properties of newly discovered LRRK2 variants associated with Parkinson’s disease. Neurobiol Dis. 199: 106571 (2024)
						  
- Inoshita T, Liu J-Y, Taniguchi D, Ishii R, Shiba-Fukushima K, Hattori N, Imai Y: Parkinson’s disease-associated Leucine-rich repeat kinase regulates UNC-104-dependent axonal transport of Arl8-positive vesicles in Drosophila. iScience 25, 105476 (2022)
						  
- 
						Tezuka T, Taniguchi D, Sano M, Shimada T, Oji Y,
							Tsunemi T, Ikeda A, Li Y, Yoshino H, Ogata J,
							Shiba-Fukushima K Funayama M, Nishioka K, Imai
							Y, Hattori N: Pathophysiological evaluation of
							the LRRK2 G2385R risk variant for Parkinson’s
							disease. NPJ Parkinsons
									Dis. 8: Article number 97 (2022)   
- 
					Daida K, Shimonaka S, Shiba-Fukushima K, Ogata
							J, Yoshino H, Okuzumi A, Hatano T, Motoi Y,
							Hirunagi T, Katsuno M, Shindou H, Funayama M,
							Nishioka K, Hattori N, Imai Y: α-Synuclein V15A
							variant in familial Parkinson's disease exhibits
							a weaker lipid-binding property. Mov
									Disord. (2022) in press  
- Liu J-Y, Inoshita T,
							Shiba-Fukushima K, Yoshida S, Ogata K,
							Ishihama Y, Imai Y, Hattori N:
							Ubiquitination at the lysine 27 residue of
							the Parkin ubiquitin-like domain is
							suggestive of a new mechanism of Parkin
							activation. Hum Mol
									Genet 31: 2623-2638 (2022)  
- Kato S, Arasaki K, Tokutomi N, Imai Y, Inoshita T, Hattori N, Sasaki T, Sato M, Wakana Y, Inoue H, Tagaya M: Syntaxin 17, an ancient SNARE paralog, plays different and conserved roles in different organisms. J Cell Sci. 134: jcs258699 (2021)
- Hung YC, Huang KL, Chen PL, Li JL, Lu SH, Chang JC, Lin HY, Lo WC, Huang SY, Lee TT, Lin TY, Imai Y, Hattori N, Liu CS, Tsai SY, Chen CH, Lin CH, Chan CC: UQCRC1 engages cytochrome c for neuronal apoptotic cell death. Cell Rep. 36: 109729 (2021)
- 
						Elahi M, Motoi Y, Shimonaka S, Ishida Y, Hioki H, Takanashi M, Ishiguro K, Imai Y, Hattori N: High-fat diet-induced activation of SGK1 promotes Alzheimer's disease-associated tau pathology. 
						Hum Mol Genet. 18: 1693–1710 (2021)
						  
- Ogata J, Hirao K, Nishioka K,
							Hayashida A, Li Y, Yoshino H, Shimizu S,
							Hattori N, Imai Y: A Novel LRRK2 Variant p.G2294R in the WD40 Domain Identified
							in Familial Parkinson’s Disease Affects LRRK2 Protein Levels. Int. J. Mol.
									Sci. 22: 3708 (2021)
							  
- Kano M, Takanashi
							M, Oyama G, Yoritaka A, Hatano T, Shiba-Fukushima K, Nagai M, Nishiyama K, Hasegawa K,
							Inoshita T, Ishikawa K-i, Akamatsu W, Imai Y, Bolognin S, Schwamborn JC, Hattori N: 
							Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations.
							NPJ Parkinsons Dis 6: Article number 33 (2020)   
- Masuzugawa S, Nishioka K, Imai Y, Ogata J, Shojima Y, Li Y, Yoshino H, Hattori N: A novel rare
						variant of LRRK2 associated with familial Parkinson's disease: p.R1501W.
						Parkinsonism Relat Disord 76:46-48 (2020)
- Yamaguchi A, Ishikawa K-I, Inoshita T, Shiba-Fukushima K, Saiki S, Hatano T,
							Mori A, Oji Y, Okuzumi A, Li Y, Funayama M, Imai Y, Hattori N, Akamatsu W: Identifying
							therapeutic agents for amelioration of mitochondrial clearance disorder in neurons of
							familial Parkinson's disease. Stem Cell Reports. 14: 1060-1075
							(2020)  
- Shiba-Fukushima K, Inoshita T, Sano O, Iwata H, Ishikawa K-i, Okano H,
							Akamatsu W, Imai Y, Hattori N: A cell-based high-throughput screening identified two
							compounds that enhance PINK1-Parkin signaling. iScience.
							Article number: 424 (2020)   
- Imai Y, Inoshita T,
							Meng H, Shiba-Fukushima K, Hara KY, Sawamura N, Hattori N: Light-driven activation of
							mitochondrial proton-motive force improves motor behaviors in a Drosophila model of
							Parkinson’s disease. Commun Biol. 2: Article number: 424 (2019)
							  
- Ikeda A, Nishioka K, Meng H, Takanashi M, Hasegawa I, Inoshita T, Shiba-Fukushima K, Li Y,
						Yoshino H, Mori A, Okuzumi A, Yamaguchi A, Nonaka R, Izawa N, Ishikawa KI, Saiki H, Morita M,
						Hasegawa M, Hasegawa K, Elahi M, Funayama M, Okano H, Akamatsu W, Imai Y, Hattori N: Mutations
						in CHCHD2 cause α-synuclein aggregation. Hum Mol
								Genet. 28:3895-3911 (2019) 
- Mori A, Hatano T, Inoshita
							T, Shiba-Fukushima K, Koinuma T, Meng H, Kubo S-i, Spratt S, Cui C, Yamashita C, Miki Y,
							Yamamoto K, Hirabayashi T, Murakami M, Takahashi Y, Shindou H, Nonaka T, Hasegawa M, Okuzumi
							A, Imai Y, Hattori N: Parkinson‘s disease-associated iPLA2-VIA/PLA2G6 regulates
							neuronal functions and α-synuclein stability through membrane remodeling.
							Proc Natl Acad Sci U S A. 116: 20689–20699 (2019)  
- Sugo M, Kimura H, Arasaki K, Amemiya T, Hirota N, Dohmae N, Imai Y, Inoshita T, Shiba-Fukushima
						K, Hattori N, Fujimoto T, Wakana Y, Inoue H, Tagaya M: Syntaxin 17 regulates the localization
						and function of PGAM5 in mitochondrial division and mitophagy. EMBO J.
						37, e98899 (2018)
- Inoshita T, Hattori N, Imai Y: Live
							Imaging of Axonal Transport in the Motor Neurons of Drosophila Larvae
							Bio-Protocol 7 (23): e2631 (2017)  
- Hosaka Y, Inoshita T, Shiba-Fukushima K, Cui C, Arano T, Imai Y, Hattori N: Reduced TDP-43
						Expression Improves Neuronal Activities in a Drosophila Model of Perry Syndrome.
							EBioMedicine. 21: 218-227 (2017)
- Meng H, Yamashita C, Shiba-Fukushima K, Inoshita T, Funayama M, Sato S, Hatta T, Natsume T,
						Umitsu M, Takagi J, Imai Y, Hattori N: Loss of Parkinson's disease-associated protein CHCHD2
						affects mitochondrial crista structure and destabilizes cytochrome c. Nat
								Commun.8, 10.1038/ncomms15500 (2017)
- Shiba-Fukushima K, Ishikawa K-I, Inoshita T, Izawa N, Takanashi M, Sato S, Onodera O, Akamatsu
						W, Okano H, Imai Y, Hattori N: Evidence that phosphorylated ubiquitin signaling is involved in
						the etiology of Parkinson's disease Hum Mol Genet. 26: 3172-3185
						(2017)
- Inoshita T, Arano T, Hosaka Y, Meng H, Umezaki Y, Kosugi S, Morimoto T, Koike M, Chang H-Y, Imai
						Y, Hattori N: Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the
						endosomal pathway in Drosophila. Hum Mol
								Genet. 26: 2933-2948 (2017)
- Iyer J, Wang Q, Le T, Pizzo L, Gronke S, Ambegaokar S, Imai Y, Srivastava A, Llamusi Troisi B,
						Mardon G, Artero R, Jackson GR, Isaacs AM, Partridge L, Kumar JP, Girirajan S. Quantitative
						assessment of eye phenotypes for functional genetic studies using Drosophila
							melanogaster. G3. 6(5):1427-1437 (2016)
- Klionsky DJ, et al.: Guidelines for the use and interpretation of assays for monitoring
						autophagy (3rd edition). Autophagy. 2(1): 1-222 (2016)
- Imai Y, Kobayashi Y, Inoshita T, Meng H, Arano T, Uemura K, Asano T, Yoshimi K, Zhang C-L,
						Matsumoto G, Ohtsuka T, Kageyama R, Kiyonari H, Shioi G, Nukina N, Hattori N, and Takahashi R:
						The Parkinson's disease-associated protein kinase LRRK2 modulates Notch signaling through the
						endosomal pathway. PLoS Genet. 11(9): e1005503 (2015)
- Vaikath NN, Majbour NK, Paleologou KE, Ardah MT, van Dam E, van de Berg WD, Forrest SL,
						Parkkinen L, Gai WP, Hattori N, Takanashi M, Lee SJ, Mann DM, Imai Y, Halliday GM, Li JY,
						El-Agnaf OM: Generation and characterization of novel conformation-specific monoclonal
						antibodies for α-synuclein pathology. Neurobiol Dis. 79: 81-99
						(2015)
- Shiba-Fukushima K, Arano, T, Matsumoto G, Inoshita T, Yoshida S, Ishihama Y, Ryu K-K, Nukina N,
						Hattori N, Imai Y: Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin
						Mitochondrial Tethering. PLoS Genet. 10: e1004861 (2014b) This
							article is featured in a mini review: A Polyubiquitin Chain Reaction: Parkin Recruitment to
							Damaged Mitochondria.PLoS Genet.11: e1004952 (2015)
- Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y: Lysine 63-linked polyubiquitination is
						dispensable for Parkin-mediated mitophagy. J Biol. Chem. 289:
						33131-33136 (2014)
- Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y: PINK1-mediated phosphorylation of Parkin
						boosts Parkin activity in Drosophila. PLoS Genet.10(6):
						e1004391 (2014a) 
- Wu Z, Sawada T, Shiba K, Liu S, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B: Tricornered/NDR
						kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance.
						Genes Dev. 27:157-162 (2013)
- Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N: PINK1-mediated
						phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin
						and regulates mitophagy. Sci Rep. 2: Article number: 1002 (2012)
- Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton WM, Kanao T,
						Takahashi R, Hattori N, Imai Y, Lu B: Parkinson's disease-associated kinase PINK1 regulates Miro
						protein level and axonal transport of mitochondria. PLoS Genet. 8:
						e1002537 (2012) 
- Kanao T, Sawada T, Davies S-A, Ichinose H, Hasegawa K, Takahashi R, Hattori N, Imai Y: The
						nitric oxide-cyclic GMP pathway regulates FoxO and alters dopaminergic neuron survival in
						Drosophila. PLoS ONE. 7: e30958 (2012)
- Imai Y, Lu B: Mitochondrial Dynamics and Mitophagy in Parkinson's disease: Disordered cellular
						power plant becomes a big deal in a major movement disorder. Curr Opin
								Neurobiol. 21: 935–941 (2011)
- Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y, Ishida Y, Takeda K, Ichijo H, Lu B,
						Takahashi R: The Loss of PGAM5 Suppresses the Mitochondrial Degeneration Caused by Inactivation
						of PINK1 in Drosophila. PLoS Genet. 6: e1001229 (2010)
- Kanao T, Venderova K, Park DS, Unterman T, Lu B, Imai Y: Activation of FoxO by LRRK2 induces
						expression of proapoptotic proteins and alters survival of postmitotic dopaminergic neuron in
						Drosophila. Hum Mol Genet. 19: 3747-3758 (2010)
- Gehrke S, Imai Y, Sokol N, Lu B: Pathogenic LRRK2 negatively regulates microRNA-mediated
						translational repression. Nature. 466: 637-641 (2010)
- Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, Lu B: Phosphorylation of 4E-BP by
						LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO
								J. 27: 2432-2443 (2008)
- Wang HQ, Imai Y, Inoue H, Kataoka A, Iita S, Takahashi R: Pael-R transgenic mice crossed with
						parkin deficient mice displayed progressive and selective catecholaminergic neuronal loss.
						J Neurochem. 107: 171-185 (2008)
- Wang J-W, Imai Y, Lu B: Activation of PAR-1 kinase and stimulation of tau phosphorylation by
						diverse signals require the tumor suppressor protein LKB1. J
								Neurosci.  27: 2457-2467 (2007)
- Kitao Y, Imai Y, Ozawa K, Kataoka A, Ikeda T, Soda M, Namekawa K, Kiyama H, Stern DM, Hori O,
						Wakamatsu K, Ito S, Itohara S, Takahashi R, Ogawa S: Pael receptor induces death of dopaminergic
						neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is
						enhanced under condition of Parkin inactivation. Hum Mol Genet.16:
						50-60 (2007)
- Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang J-W, Yang L, Beal MF, Vogel H, Lu B:
						Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by
						Drosophila PINK1 is rescued by Parkin. Proc Natl Acad Sci U S
								A. 103: 10793-10798 (2006)
- Yang Y, Gehrke S, Haque ME, Imai Y, Kosek J, Yang L, Beal MF, Nishimura I, Wakamatsu K, Ito S,
						Takahashi R, Lu B: Inactivation of Drosophila DJ-1 leads to impairments of oxidative
						stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci
								U S A. 102: 13670-13675 (2005)
- Imai Y and Takahashi R: How do Parkin mutations result in neurodegeneration? Curr
								Opin Neurobiol. 14: 384-389 (2004)
- Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B: Parkin suppresses dopaminergic neuron-selective
						neurotoxicity induced by Pael-R in Drosophila. Neuron. 37: 911-924
						(2003)
- Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama K-I, Takahashi R: CHIP is
						associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its
						ubiquitin ligase activity. Mol Cell. 10: 55-67 (2002)
- Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R: A serine protease, HtrA2, is
						released from the mitochondria and interacts with XIAP, inducing cell death. Mol
								Cell. 8: 613-621 (2001)
- Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R: An unfolded putative membrane
						transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of
						Parkin. Cell. 105: 891-902 (2001)
- Imai Y, Soda M, Takahashi R: Parkin suppresses unfolded protein stress-induced cell death
						through its E3 ubiquitin-protein ligase activity. J Biol Chem. 275:
						35661-35664 (2000)
 Review articles (2003-2023)
				
					- Iseki T, Imai Y, Hattori N: Is glial dysfunction the key pathogenesis of LRRK2-linked Parkinson's disease? Biomolecules 13, 178 (2023)   
- Ikeda A, Imai Y, Hattori N:
						Neurodegeneration-associated mitochondrial
						proteins, CHCHD2 and CHCHD10–what
						distinguishes the two? Front.
								Cell. Dev. Biol. doi: 10.3389/fcell.2022.996061 (2022) 
- Nishioka K, Imai Y, Yoshino
						H, Li Y, Funayama M, Hattori N: Clinical
						Manifestations and Molecular Backgrounds of
						Parkinson’s Disease Regarding Genes
						Identified from Familial and Population
						Studies. Front.
								Neurol. doi:
						10.3389/fneur.2022.764917 (2022)   
- Experimental Models of
						Parkinson’s Disease. Methods Mol
								Biol., Imai Y ed.,
						Springer, 2322: 207-214 (2021)   
- Imai Y, Kim K, Wu Z, Sato S:Editorial: Molecular Links Between Mitochondrial Damage and Parkinson'sDisease and Related Disorders. Front Cell Dev Biol. 9: 734475 (2021)   
- Imai Y: Editorial for
							the
							Special Issue “Animal Models of Parkinson’s
							Disease and Related Disorders”. Int. J. Mol.
									Sci. 21: 4250 (2020)   
- Mori A, Imai Y, Hattori N: Lipids: Key
							players that modulate α-synuclein toxicity and neurodegeneration in Parkinson’s
							disease. Int. J. Mol. Sci. 21: 3301 (2020)   
- Imai Y: PINK1-Parkin signaling in Parkinson's disease: Lessons from Drosophila.
						Neurosci Res. S0168-0102(20)30066-3 (2020)
- Wakisaka KT, Imai Y: The dawn of pirna research in various neuronal disorders.
						Front Biosci (Landmark Ed). 24:1440-1451 (2019).
- Imai Y, Meng H,
							Shiba-Fukushima K, Hattori N: Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of
							Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia.
							Int. J. Mol. Sci. 20: 908, doi: 10.3390/ijms20040908 (2019)
						 
- Inoshita
							T, Cui C, Hattori N, Imai Y: Regulation of membrane dynamics by Parkinson's
							disease-associated genes. J Genet. 97:715-727 (2018)  
- Hattori N, Arano T, Hatano T, Mori A, Imai Y: Mitochondrial-Associated Membranes
						in Parkinson's Disease. Adv Exp Med Biol. 997:157-169 (2017)
- Meng H, Yamashita C, Hattori N, Imai Y: Measurements of the mitochondrial respiration and
						glycolytic activity in Drosophila embryonic cells. Protocol Exchange
						doi:10.1038/protex.2017.069 (2017)
- Inoshita T, Shiba-Fukushima K, Meng H, Hattori N, Imai Y: Monitoring Mitochondrial Changes by
						Alteration of the PINK1-Parkin Signaling inDrosophila. Methods Mol
								Biol. doi: 10.1007/7651_2017_9 (2017)
- Inoshita T, Imai Y: Disturbances in Mitochondrial Function and Vesicular Transport as Mechanisms
						for Pathogenesis in Parkinson's Disease. In:
						Horizons in Neuroscience Research Vol.
						29, Costa A and Villalba E ed, Nova Biomedical, New York, Chapter 2, 89-115.
- Inoshita T, Imai Y: Regulation of vesicular trafficking by Parkinson's disease-associated genes.
						AIMS Mol Sci,
						 2(4):
						 461-475 (2015)
					
- Arano T, Imai Y: Mitophagy regulated by the PINK1-Parkin pathway. In: Cell
							Death - Autophagy, Necrosis and Apoptosis, Simcic I ed, InTech, Rijeka, Chapter 6,
						113-131.
- Inoshita T, Imai Y: Ubiquitin ligase-assisted selective autophagy of mitochondria: Determining
						its biological significance using Drosophila models. In:
						Autophagy Vol. 4: Cancer, Other Pathologies, Inflammation, Immunity, and
						Infection, Hayat MA ed, Elsevier, Amsterdam, Chapter 9, 151-162.
- Imai Y, Hattori N: Mitophagy Controlled by the PINK1-Parkin Pathway is Associated with
						Parkinson's Disease Pathogenesis. In: Autophagy Vol. 4: Cancer, Other
						Pathologies, Inflammation, Immunity, and Infection, Hayat MA ed, Elsevier, Amsterdam, Chapter
						15, 227-238.
- Hattori N, Saiki S, Imai Y: Regulation by mitophagy. Int J Biochem Cell
								Biol.
						53
						: 147–150 (2014)
					
- Lee S, Imai Y, Gehrke S, Liu S, Lu B: The synaptic function of LRRK2. Biochem Soc
								Trans. 40:1047-1051 (2012)
- Imai Y: Mitochondrial regulation by the PINK1-Parkin signaling. ISRN Cell
								Biol. 2012: Article ID 926160 (2012)
- Imai Y, Venderova K, Lim K-L: Editorial; Animal models of Parkinson's disease.
						Parkinsons Dis. 2012: Article ID 729428 (2012)
- Imai Y, Lu B: Mitochondrial Dynamics and Mitophagy in Parkinson's disease: Disordered cellular
						power plant becomes a big deal in a major movement disorder. Curr Opin
								Neurobiol. 21: 935–941 (2011)
- Imai Y, Venderova K, Park DS, Cai H, Schmidt E: Editorial; Animal models of Parkinson's disease.
						Parkinsons Dis. 2011: Article ID 364328 (2011)
- Imai Y: Dysregulation of microRNA-mediated translational repression is involved in
						neurodegeneration in a Drosophila model of Parkinson's disease.
						Bulletin 75: 39-56 (2011)
- Imai Y and Takahashi R: Parkinson's disease and ER stress. In: Molecular mechanisms in
						Parkinson's disease. Kähle P and Haass C eds, Georgetown: Landes
								Biosci. (2005)
- Imai Y and Takahashi R: How do Parkin mutations result in neurodegeneration? Curr
								Opin Neurobiol. 14: 384-389 (2004)
- Takahashi R and Imai Y: Pael receptor, endoplasmic reticulum stress, and Parkinson's disease.
						J Neurol. 250 Suppl 3: III25-29 (2003)
- Takahashi R, Imai Y, Hattori N, Mizuno Y: Parkin and endoplasmic reticulum stress.
						Ann N Y Acad Sci. 991: 101-106 (2003)