|
業績
|
|
【主な論文発表(2000-2024)】
- Ikeda A, Meng H, Taniguchi D, Mio M, Funayama M, Nishioka K, Yoshida M, Li Y, Yoshino H, Inoshita T, Shiba-Fukushima K, Okubo Y, Sakurai T, Amo T, Aiba I, Saito Y, Saito Y, Murayama S, Atsuta N, Nakamura R, Tohnai G, Izumi Y, Morita M, Tamura A, Kano O, Oda M, Kuwabara S, Yamashita T, Sone J, Kaji R, Sobue G, Imai Y, Hattori N: CHCHD2 P14L, found in amyotrophic lateral sclerosis, exhibits cytoplasmic mislocalization and alters Ca2+ homeostasis. PNAS Nexus 3, pgae319 (2024)
- Tezuka T, Ishiguro M, Taniguchi D, Osogaguchi E, Shiba-Fukushima K, Ogata J, Ishii R, Ikeda A, Li Y, Yoshino H, Matsui T, Kaida K, Funayama M, Nishioka K, Kumazawa F, Matsubara T, Tsuda H, Saito Y, Murayama S, Imai Y, Hattori N: Clinical characteristics and pathophysiological properties of newly discovered LRRK2 variants associated with Parkinson’s disease. Neurobiol Dis. 199: 106571 (2024)
- Inoshita T, Liu J-Y, Taniguchi D, Ishii R, Shiba-Fukushima K, Hattori N, Imai Y: Parkinson’s disease-associated Leucine-rich repeat kinase regulates UNC-104-dependent axonal transport of Arl8-positive vesicles in Drosophila. iScience 25, 105476 (2022)
-
Tezuka T, Taniguchi D, Sano M, Shimada T,
Oji Y,
Tsunemi T, Ikeda A, Li Y, Yoshino H, Ogata
J,
Shiba-Fukushima K Funayama M, Nishioka K,
Imai
Y, Hattori N: Pathophysiological evaluation
of
the LRRK2 G2385R risk variant for
Parkinson’s
disease. NPJ Parkinsons
Dis. 8: Article number
97 (2022)

-
Daida K, Shimonaka S, Shiba-Fukushima K,
Ogata
J, Yoshino H, Okuzumi A, Hatano T, Motoi Y,
Hirunagi T, Katsuno M, Shindou H, Funayama
M,
Nishioka K, Hattori N, Imai Y: α-Synuclein
V15A
variant in familial Parkinson's disease
exhibits
a weaker lipid-binding property.
Mov
Disord. (2022) in
press
- Liu J-Y, Inoshita T,
Shiba-Fukushima K, Yoshida S, Ogata K,
Ishihama Y, Imai Y, Hattori N:
Ubiquitination at the lysine 27 residue of
the Parkin ubiquitin-like domain is
suggestive of a new mechanism of Parkin
activation. Hum Mol
Genet 31: 2623-2638
(2022)
- Kato S, Arasaki K, Tokutomi N, Imai Y, Inoshita
T, Hattori N, Sasaki T, Sato M, Wakana Y, Inoue
H, Tagaya M: Syntaxin 17, an ancient SNARE
paralog, plays different and conserved roles in
different organisms. J Cell
Sci. 134: jcs258699 (2021)
- Hung YC, Huang KL, Chen PL, Li JL, Lu SH, Chang
JC, Lin HY, Lo WC, Huang SY, Lee TT, Lin TY,
Imai Y, Hattori N, Liu CS, Tsai SY, Chen CH, Lin
CH, Chan CC: UQCRC1 engages cytochrome c for
neuronal apoptotic cell death. Cell
Rep. 36: 109729 (2021)
-
Elahi M, Motoi Y, Shimonaka S, Ishida Y,
Hioki H, Takanashi M, Ishiguro K, Imai Y,
Hattori N: High-fat diet-induced activation
of SGK1 promotes Alzheimer's
disease-associated tau pathology.
Hum Mol Genet. 18:
1693-1710 (2021)
- Ogata J, Hirao K, Nishioka
K, Hayashida A, Li Y, Yoshino H, Shimizu S,
Hattori N, Imai Y: A Novel LRRK2 Variant
p.G2294R in the WD40 Domain Identified
in Familial Parkinson’s Disease Affects
LRRK2 Protein Levels. Int. J.
Mol. Sci. 22: 3708
(2021)
- Kano M, Takanashi M, Oyama
G, Yoritaka A, Hatano T, Shiba-Fukushima K,
Nagai M, Nishiyama K, Hasegawa K, Inoshita
T, Ishikawa K-i, Akamatsu W, Imai Y,
Bolognin S, Schwamborn JC, Hattori N:
Reduced astrocytic reactivity in human
brains and midbrain organoids with PRKN
mutations. NPJ Parkinsons
Dis 6: Article number
33 (2020)
- Masuzugawa S, Nishioka K, Imai Y, Ogata J,
Shojima Y, Li Y, Yoshino H, Hattori N: A novel
rare variant of LRRK2 associated with familial
Parkinson's disease: p.R1501W.
Parkinsonism Relat
Disord 76:46-48 (2020)
- Yamaguchi A, Ishikawa K-I,
Inoshita T, Shiba-Fukushima K, Saiki S,
Hatano T, Mori A, Oji Y, Okuzumi A, Li Y,
Funayama M, Imai Y, Hattori N, Akamatsu W:
Identifying therapeutic agents for
amelioration of mitochondrial clearance
disorder in neurons of familial Parkinson's
disease. Stem Cell
Reports. 14: 1060-1075
(2020)

- Shiba-Fukushima K, Inoshita
T, Sano O, Iwata H, Ishikawa K-i, Okano H,
Akamatsu W, Imai Y, Hattori N: A cell-based
high-throughput screening identified two
compounds that enhance PINK1-Parkin
signaling.
iScience.
Article number: 424 (2020)
- Imai Y, Inoshita T, Meng H,
Shiba-Fukushima K, Hara KY, Sawamura N,
Hattori N: Light-driven activation of
mitochondrial proton-motive force improves
motor behaviors in a Drosophila model of
Parkinson’s disease. Commun
Biol. 2: Article
number: 424 (2019)
- Ikeda A, Nishioka K, Meng H, Takanashi M,
Hasegawa I, Inoshita T, Shiba-Fukushima K, Li Y,
Yoshino H, Mori A, Okuzumi A, Yamaguchi A,
Nonaka R, Izawa N, Ishikawa KI, Saiki H, Morita
M, Hasegawa M, Hasegawa K, Elahi M, Funayama M,
Okano H, Akamatsu W, Imai Y, Hattori N:
Mutations in CHCHD2 cause
α-synuclein aggregation. Hum
Mol
Genet.
28:3895-3911 (2019)
- Mori A, Hatano T, Inoshita
T, Shiba-Fukushima K, Koinuma T, Meng H,
Kubo S-i, Spratt S, Cui C, Yamashita C, Miki
Y, Yamamoto K, Hirabayashi T, Murakami M,
Takahashi Y, Shindou H, Nonaka T, Hasegawa
M, Okuzumi A, Imai Y, Hattori N:
Parkinson‘s disease-associated
iPLA2-VIA/PLA2G6 regulates neuronal
functions and α-synuclein stability
through membrane remodeling.
Proc Natl Acad Sci U S
A. 116:
20689–20699 (2019)

- Sugo M, Kimura H, Arasaki K, Amemiya T, Hirota
N, Dohmae N, Imai Y, Inoshita T, Shiba-Fukushima
K, Hattori N, Fujimoto T, Wakana Y, Inoue H,
Tagaya M: Syntaxin 17 regulates the localization
and function of PGAM5 in mitochondrial division
and mitophagy. EMBO J.
37, e98899 (2018)
- Inoshita T, Hattori N, Imai
Y: Live Imaging of Axonal Transport in the
Motor Neurons of Drosophila Larvae
Bio-Protocol 7
(23): e2631 (2017)

- Hosaka Y, Inoshita T, Shiba-Fukushima K, Cui C,
Arano T, Imai Y, Hattori N: Reduced TDP-43
Expression Improves Neuronal Activities in a
Drosophila Model of Perry Syndrome.
EBioMedicine. 21:
218-227 (2017)
- Meng H, Yamashita C, Shiba-Fukushima K, Inoshita
T, Funayama M, Sato S, Hatta T, Natsume T,
Umitsu M, Takagi J, Imai Y, Hattori N: Loss of
Parkinson's disease-associated protein CHCHD2
affects mitochondrial crista structure and
destabilizes cytochrome c. Nat
Commun.8,
10.1038/ncomms15500 (2017)
- Shiba-Fukushima K, Ishikawa K-I, Inoshita T,
Izawa N, Takanashi M, Sato S, Onodera O,
Akamatsu W, Okano H, Imai Y, Hattori N: Evidence
that phosphorylated ubiquitin signaling is
involved in the etiology of Parkinson's disease
Hum Mol Genet. 26:
3172-3185 (2017)
- Inoshita T, Arano T, Hosaka Y, Meng H, Umezaki
Y, Kosugi S, Morimoto T, Koike M, Chang H-Y,
Imai Y, Hattori N: Vps35 in cooperation with
LRRK2 regulates synaptic vesicle endocytosis
through the endosomal pathway in
Drosophila. Hum Mol
Genet.
26: 2933-2948 (2017)
- Iyer J, Wang Q, Le T, Pizzo L, Gronke S,
Ambegaokar S, Imai Y, Srivastava A, Llamusi
Troisi B, Mardon G, Artero R, Jackson GR, Isaacs
AM, Partridge L, Kumar JP, Girirajan S.
Quantitative assessment of eye phenotypes for
functional genetic studies using Drosophila
melanogaster.
G3. 6(5):1427-1437
(2016)
- Klionsky DJ, et al.: Guidelines for the
use and interpretation of assays for monitoring
autophagy (3rd edition).
Autophagy. 2(1): 1-222
(2016)
- Imai Y, Kobayashi Y, Inoshita T, Meng H, Arano
T, Uemura K, Asano T, Yoshimi K, Zhang C-L,
Matsumoto G, Ohtsuka T, Kageyama R, Kiyonari H,
Shioi G, Nukina N, Hattori N, and Takahashi R:
The Parkinson's disease-associated protein
kinase LRRK2 modulates Notch signaling through
the endosomal pathway. PLoS
Genet. 11(9): e1005503
(2015)
- Vaikath NN, Majbour NK, Paleologou KE, Ardah MT,
van Dam E, van de Berg WD, Forrest SL, Parkkinen
L, Gai WP, Hattori N, Takanashi M, Lee SJ, Mann
DM, Imai Y, Halliday GM, Li JY, El-Agnaf OM:
Generation and characterization of novel
conformation-specific monoclonal antibodies for
α-synuclein pathology.
Neurobiol Dis. 79:
81-99 (2015)
- Shiba-Fukushima K, Arano, T, Matsumoto G,
Inoshita T, Yoshida S, Ishihama Y, Ryu K-K,
Nukina N, Hattori N, Imai Y: Phosphorylation of
Mitochondrial Polyubiquitin by PINK1 Promotes
Parkin Mitochondrial Tethering. PLoS
Genet. 10: e1004861
(2014b) This article is featured in a mini
review: A Polyubiquitin Chain Reaction:
Parkin Recruitment to Damaged
Mitochondria.PLoS
Genet.11: e1004952
(2015)
- Shiba-Fukushima K, Inoshita T, Hattori N, Imai
Y: Lysine 63-linked polyubiquitination is
dispensable for Parkin-mediated
mitophagy. J Biol.
Chem. 289: 33131-33136
(2014)
- Shiba-Fukushima K, Inoshita T, Hattori N, Imai
Y: PINK1-mediated phosphorylation of Parkin
boosts Parkin activity in Drosophila.
PLoS Genet.10(6):
e1004391 (2014a)
- Wu Z, Sawada T, Shiba K, Liu S, Kanao T,
Takahashi R, Hattori N, Imai Y, Lu B:
Tricornered/NDR kinase signaling mediates
PINK1-directed mitochondrial quality control and
tissue maintenance. Genes
Dev. 27:157-162 (2013)
- Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama
Y, Kanao T, Sato S, Hattori N: PINK1-mediated
phosphorylation of the Parkin ubiquitin-like
domain primes mitochondrial translocation of
Parkin and regulates mitophagy. Sci
Rep. 2: Article number:
1002 (2012)
- Liu S, Sawada T, Lee S, Yu W, Silverio G,
Alapatt P, Millan I, Shen A, Saxton WM, Kanao T,
Takahashi R, Hattori N, Imai Y, Lu B:
Parkinson's disease-associated kinase PINK1
regulates Miro protein level and axonal
transport of mitochondria. PLoS
Genet. 8: e1002537 (2012)
- Kanao T, Sawada T, Davies S-A, Ichinose H,
Hasegawa K, Takahashi R, Hattori N, Imai Y: The
nitric oxide-cyclic GMP pathway regulates FoxO
and alters dopaminergic neuron survival in
Drosophila. PLoS
ONE. 7: e30958 (2012)
- Imai Y, Lu B: Mitochondrial Dynamics and
Mitophagy in Parkinson's disease: Disordered
cellular power plant becomes a big deal in a
major movement disorder. Curr Opin
Neurobiol. 21:
935–941 (2011)
- Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki
Y, Ishida Y, Takeda K, Ichijo H, Lu B, Takahashi
R: The Loss of PGAM5 Suppresses the
Mitochondrial Degeneration Caused by
Inactivation of PINK1 in Drosophila.
PLoS Genet. 6:
e1001229 (2010)
- Kanao T, Venderova K, Park DS, Unterman T, Lu B,
Imai Y: Activation of FoxO by LRRK2 induces
expression of proapoptotic proteins and alters
survival of postmitotic dopaminergic neuron in
Drosophila. Hum Mol
Genet. 19: 3747-3758
(2010)
- Gehrke S, Imai Y, Sokol N, Lu B: Pathogenic
LRRK2 negatively regulates microRNA-mediated
translational repression.
Nature. 466: 637-641
(2010)
- Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa
K, Oota E, Lu B: Phosphorylation of 4E-BP by
LRRK2 affects the maintenance of dopaminergic
neurons in Drosophila. EMBO
J. 27: 2432-2443 (2008)
- Wang HQ, Imai Y, Inoue H, Kataoka A, Iita S,
Takahashi R: Pael-R transgenic mice crossed with
parkin deficient mice displayed progressive and
selective catecholaminergic neuronal loss.
J Neurochem. 107:
171-185 (2008)
- Wang J-W, Imai Y, Lu B: Activation of PAR-1
kinase and stimulation of tau phosphorylation by
diverse signals require the tumor suppressor
protein LKB1. J
Neurosci. 27:
2457-2467 (2007)
- Kitao Y, Imai Y, Ozawa K, Kataoka A, Ikeda T,
Soda M, Namekawa K, Kiyama H, Stern DM, Hori O,
Wakamatsu K, Ito S, Itohara S, Takahashi R,
Ogawa S: Pael receptor induces death of
dopaminergic neurons in the substantia nigra via
endoplasmic reticulum stress and dopamine
toxicity, which is enhanced under condition of
Parkin inactivation. Hum Mol
Genet.16: 50-60 (2007)
- Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y,
Wang J-W, Yang L, Beal MF, Vogel H, Lu B:
Mitochondrial pathology and muscle and
dopaminergic neuron degeneration caused by
Drosophila PINK1 is rescued by Parkin.
Proc Natl Acad Sci U S
A. 103: 10793-10798 (2006)
- Yang Y, Gehrke S, Haque ME, Imai Y, Kosek J,
Yang L, Beal MF, Nishimura I, Wakamatsu K, Ito
S, Takahashi R, Lu B: Inactivation of
Drosophila DJ-1 leads to impairments of
oxidative stress response and
phosphatidylinositol 3-kinase/Akt signaling.
Proc Natl Acad Sci U S
A. 102: 13670-13675 (2005)
- Imai Y and Takahashi R: How do Parkin mutations
result in neurodegeneration? Curr
Opin Neurobiol. 14:
384-389 (2004)
- Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B:
Parkin suppresses dopaminergic neuron-selective
neurotoxicity induced by Pael-R in
Drosophila. Neuron.
37: 911-924 (2003)
- Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa
T, Nakayama K-I, Takahashi R: CHIP is associated
with Parkin, a gene responsible for familial
Parkinson's disease, and enhances its ubiquitin
ligase activity. Mol
Cell. 10: 55-67 (2002)
- Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio
K, Takahashi R: A serine protease, HtrA2, is
released from the mitochondria and interacts
with XIAP, inducing cell death. Mol
Cell. 8: 613-621 (2001)
- Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y,
Takahashi R: An unfolded putative membrane
transmembrane polypeptide, which can lead to
endoplasmic reticulum stress, is a substrate of
Parkin. Cell. 105:
891-902 (2001)
- Imai Y, Soda M, Takahashi R: Parkin suppresses
unfolded protein stress-induced cell death
through its E3 ubiquitin-protein ligase
activity. J Biol Chem.
275: 35661-35664 (2000)
【主な総説・図書(英文)(2003-2023)】
- Iseki T, Imai Y, Hattori N: Is glial dysfunction the key pathogenesis of LRRK2-linked Parkinson's disease? Biomolecules 13, 178 (2023)
- Ikeda A, Imai Y, Hattori N:
Neurodegeneration-associated mitochondrial
proteins, CHCHD2 and CHCHD10?what
distinguishes the two? Front.
Cell. Dev. Biol. doi: 10.3389/fcell.2022.996061 (2022)
- Nishioka K, Imai Y, Yoshino
H, Li Y, Funayama M, Hattori N: Clinical
Manifestations and Molecular Backgrounds of
Parkinson’s Disease Regarding Genes
Identified from Familial and Population
Studies. Front.
Neurol. doi:
10.3389/fneur.2022.764917 (2022)
- Experimental Models of
Parkinson’s Disease. Methods Mol
Biol., Imai Y ed.,
Springer, 2322: 207-214 (2021)
- Imai Y, Kim K, Wu Z, Sato
S:Editorial: Molecular Links Between
Mitochondrial Damage and Parkinson'sDisease
and Related Disorders. Front
Cell Dev Biol. 9:
734475 (2021)
- Imai Y: Editorial for the
Special Issue “Animal Models of Parkinson’s
Disease and Related Disorders”.
Int. J. Mol.
Sci. 21: 4250 (2020)
- Mori
A, Imai Y, Hattori N: Lipids: Key players
that modulate α-synuclein toxicity and
neurodegeneration in Parkinson’s
disease. Int. J. Mol.
Sci. 21: 3301
(2020)
- Imai Y: PINK1-Parkin signaling in
Parkinson's disease: Lessons from Drosophila.
Neurosci
Res. S0168-0102(20)30066-3
(2020)
- Wakisaka KT, Imai Y: The dawn of pirna
research in various neuronal disorders.
Front Biosci (Landmark
Ed). 24:1440-1451 (2019).
- Imai Y, Meng H,
Shiba-Fukushima K, Hattori N: Twin CHCH
Proteins, CHCHD2, and CHCHD10: Key Molecules
of Parkinson’s Disease, Amyotrophic Lateral
Sclerosis, and Frontotemporal Dementia.
Int. J. Mol. Sci.
20: 908, doi: 10.3390/ijms20040908
(2019)

- Inoshita T, Cui C, Hattori
N, Imai Y: Regulation of membrane dynamics
by Parkinson's disease-associated genes.
J Genet.
97:715-727 (2018)

- Hattori N, Arano T, Hatano T, Mori
A, Imai Y: Mitochondrial-Associated
Membranes in Parkinson's Disease.
Adv Exp Med Biol.
997:157-169 (2017)
- Meng H, Yamashita C, Hattori N, Imai Y:
Measurements of the mitochondrial respiration
and glycolytic activity in Drosophila embryonic
cells. Protocol
Exchange
doi:10.1038/protex.2017.069 (2017)
- Inoshita T, Shiba-Fukushima K, Meng H, Hattori
N, Imai Y: Monitoring Mitochondrial Changes by
Alteration of the PINK1-Parkin Signaling
inDrosophila. Methods Mol
Biol.
doi: 10.1007/7651_2017_9 (2017)
- Inoshita T, Imai Y: Disturbances in
Mitochondrial Function and Vesicular Transport
as Mechanisms for Pathogenesis in Parkinson's
Disease. In:
Horizons in
Neuroscience Research Vol. 29,
Costa A and Villalba E ed, Nova Biomedical, New
York, Chapter 2, 89-115.
- Inoshita T, Imai Y: Regulation of vesicular
trafficking by Parkinson's disease-associated
genes. AIMS Mol Sci,
2(4):
461-475 (2015)
- Arano T, Imai Y: Mitophagy regulated by the
PINK1-Parkin pathway. In: Cell
Death - Autophagy, Necrosis and
Apoptosis, Simcic I ed, InTech,
Rijeka, Chapter 6, 113-131.
- Inoshita T, Imai Y: Ubiquitin ligase-assisted
selective autophagy of mitochondria: Determining
its biological significance using
Drosophila models. In:
Autophagy Vol. 4: Cancer,
Other Pathologies, Inflammation, Immunity, and
Infection, Hayat MA ed, Elsevier, Amsterdam,
Chapter 9, 151-162.
- Imai Y, Hattori N: Mitophagy Controlled by the
PINK1-Parkin Pathway is Associated with
Parkinson's Disease Pathogenesis. In:
Autophagy Vol. 4: Cancer,
Other Pathologies, Inflammation, Immunity, and
Infection, Hayat MA ed, Elsevier, Amsterdam,
Chapter 15, 227-238.
- Hattori N, Saiki S, Imai Y: Regulation by
mitophagy. Int J Biochem Cell
Biol.
53
: 147–150 (2014)
- Lee S, Imai Y, Gehrke S, Liu S, Lu B: The
synaptic function of LRRK2. Biochem
Soc Trans. 40:1047-1051
(2012)
- Imai Y: Mitochondrial regulation by the
PINK1-Parkin signaling. ISRN Cell
Biol. 2012: Article
ID 926160 (2012)
- Imai Y, Venderova K, Lim K-L: Editorial; Animal
models of Parkinson's disease.
Parkinsons Dis. 2012:
Article ID 729428 (2012)
- Imai Y, Lu B: Mitochondrial Dynamics and
Mitophagy in Parkinson's disease: Disordered
cellular power plant becomes a big deal in a
major movement disorder. Curr Opin
Neurobiol. 21:
935–941 (2011)
- Imai Y, Venderova K, Park DS, Cai H, Schmidt E:
Editorial; Animal models of Parkinson's disease.
Parkinsons Dis. 2011:
Article ID 364328 (2011)
- Imai Y: Dysregulation of microRNA-mediated
translational repression is involved in
neurodegeneration in a Drosophila model
of Parkinson's disease.
Bulletin 75: 39-56
(2011)
- Imai Y and Takahashi R: Parkinson's disease and
ER stress. In: Molecular mechanisms in
Parkinson's disease. Kähle P and Haass C
eds, Georgetown: Landes
Biosci. (2005)
- Imai Y and Takahashi R: How do Parkin mutations
result in neurodegeneration? Curr
Opin Neurobiol. 14:
384-389 (2004)
- Takahashi R and Imai Y: Pael receptor,
endoplasmic reticulum stress, and Parkinson's
disease. J Neurol. 250
Suppl 3: III25-29 (2003)
- Takahashi R, Imai Y, Hattori N, Mizuno Y: Parkin
and endoplasmic reticulum stress.
Ann N Y Acad Sci. 991:
101-106 (2003)
【主な総説・図書(和文)(2001-2023)】
- 今居 譲:「ミトコンドリア障害」、パーキンソン病2023 基礎・臨床の最新動向、日本臨牀81巻8号, 1144-1150(2023)
- 今居 譲:「基礎研究のためのパーキンソン病モデル」医学のあゆみ、第278巻10号,
881-885, 2021
- 今居 譲:最新・パーキンソン病診療「遺伝性パーキンソン病モデルの有効性(ショウジョウバエ、酵母、線虫)」日本医事新報社
4.4.5, 76-79,2021
- 柴 佳保里、井下強、今居 譲:最新・パーキンソン病診療「遺伝性パーキンソン病に特化した薬剤開発」日本医事新報社
4.4.6, 79-83,2021
- 服部信孝、今居 譲、柴佳保里、:「劣性遺伝性若年性パーキンソン病(AR-JP)の臨床、病理、分子遺伝学」実験医学増刊 認知症 第35巻12号
21-26 (2017)
- 今居 譲、柴佳保里、服部信孝:「遺伝子から探るパーキンソン病病態へのミトコンドリアの関与」医学のあゆみ 第260巻1号
85-91, 2017
- 今居 譲:「ミトコンドリア機能障害とパーキンソン病」日本臨牀 第75巻1号.28-35,
2017
- 今居 譲:「時間と研究費にやさしいエコ実験」, 村田茂穂 編, 羊土社: 173-178,
2016
- 今居 譲、柴佳保里、服部信孝: Current
Topics「PINK1とParkinが紡ぐリン酸化ポリユビキチンの鎖が、Parkinをミトコンドリアへと局在化させる」実験医学
第33巻6号: 940-943 (2015)
- 今居 譲:「ショウジョウバエを用いた遺伝性パーキンソン病の発症機序の研究」 Aging
& Health、第23巻1号: 38-41 (2014)
- 今居 譲:「パーキンソン病の病態機序」 シリーズ アクチュアル 脳・神経疾患の臨床,
パーキンソン病と運動異常、中山書店: 286-292(2013)
- 澤田知世、今居 譲、高橋良輔:「ミトコンドリア病としてのパーキンソン病」脳21、 第16号:
65-70(2013)
- 澤田知世、高橋良輔、Bingwei Lu、今居 譲:Current
Topics「PINK1とParkinはミトコンドリアの神経軸索輸送を制御する」実験医学
第30巻11号: 1778-1781 (2012)
- 今居 譲、服部信孝:「神経変性疾患に関与するmiRNAとその臨床応用への可能性」臨床・創薬利用がみえてきたmicroRNA.
遺伝子医学MOOK、第23号: 44-47(2012)
- 今居 譲、斉木臣二、服部信孝:「加齢と神経変性疾患:遺伝性パーキンソン病原因遺伝子の機能解析から明らかとなってきたミトコンドリアの品質管理機構」アンチ・エイジング医学、第7巻6号:
56-61 (2011)
- 今居 譲:「遺伝性パーキンソン病発症の分子基盤」ブレインサイエンス・レビュー 伊藤 正男 川合
述史編、クバプロ185-204(2011)
- 今居 譲:「パーキンソン病原因遺伝子研究の進展」 最新医学 第65巻4号: 799-805
(2010)
- 今居 譲:「遺伝性パーキンソン病原因遺伝子研究の新展開」実験医学増刊号 第28巻5号:
172-178 (2010)
- 今居 譲、高橋良輔:遺伝性パーキンソン病研究の最前線:分子標的治療にむけて、Brain
and Nerve 第61巻8号: 903-913
(2009)
- 今居 譲、高橋良輔:「パーキンソン病におけるドーパミン神経細胞死:異常タンパク質の蓄積は原因か結果か?」
蛋白質・核酸・酵素 第49巻増刊7号: 1113-1117 (2004)
- 今居 譲:「小胞体ストレスと神経変性疾患」痴呆症学 第61巻増刊9号77-82 (2003)
- 今居 譲、高橋良輔:「小胞体ストレスとパーキンソン病」Dementia
Japan 第17巻1号: 8-13 (2003)
- 今居 譲、高橋良輔:「パーキンソン病に関与する異常タンパク質の分解機構
–新規Parkin結合分子は、ユビキチンリガーゼと分子シャペロンであった」
遺伝子医学 第6巻4号: 122-124(2002)
- 今居 譲、高橋良輔:「若年性Parkinson病発症の分子メカニズム」
Clinical
Neuroscience 第20巻6号:
721(2002)
- 高橋良輔、今居 譲:「パーキンソン病と小胞体ストレス細胞死」医薬ジャーナル
Medical Front Line
第38巻S-2号: 68-73 (2002)
- 今居 譲、高橋良輔:「パーキンソン病と小胞体ストレス」 細胞工学 第21巻4号:
389-394(2002)
- 今居 譲、服部信孝、高橋良輔:「パーキンソン病:異常タンパク質蓄積による神経細胞死病」 実験医学
第19巻17号: 2277-2282(2001)
|
|
|
|
|
|
|
|